首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2728篇
  免费   67篇
  国内免费   10篇
电工技术   37篇
综合类   3篇
化学工业   379篇
金属工艺   46篇
机械仪表   51篇
建筑科学   36篇
矿业工程   3篇
能源动力   94篇
轻工业   93篇
水利工程   5篇
石油天然气   16篇
无线电   332篇
一般工业技术   450篇
冶金工业   1023篇
原子能技术   20篇
自动化技术   217篇
  2023年   16篇
  2022年   35篇
  2021年   53篇
  2020年   43篇
  2019年   41篇
  2018年   68篇
  2017年   57篇
  2016年   52篇
  2015年   33篇
  2014年   69篇
  2013年   139篇
  2012年   93篇
  2011年   89篇
  2010年   63篇
  2009年   75篇
  2008年   71篇
  2007年   83篇
  2006年   61篇
  2005年   41篇
  2004年   46篇
  2003年   45篇
  2002年   51篇
  2001年   32篇
  2000年   30篇
  1999年   53篇
  1998年   329篇
  1997年   203篇
  1996年   149篇
  1995年   94篇
  1994年   67篇
  1993年   71篇
  1992年   42篇
  1991年   36篇
  1990年   37篇
  1989年   24篇
  1988年   30篇
  1987年   19篇
  1986年   16篇
  1985年   17篇
  1984年   14篇
  1983年   16篇
  1982年   17篇
  1981年   17篇
  1980年   11篇
  1979年   16篇
  1978年   15篇
  1977年   31篇
  1976年   57篇
  1975年   7篇
  1973年   11篇
排序方式: 共有2805条查询结果,搜索用时 15 毫秒
71.
This article discusses the competing mechanisms of martensite formation vs eutectoid decomposition via pearlitic or bainitic mechanisms during continuous cooling of a Ti-5 wt pct Cu hypoeutectoid alloy, which falls under the category of active eutectoid systems. Faster cooling rates result in a mixed microstructure of nanoscale bainite consisting of a far-from-equilibrium Ti2Cu phase and martensitic alpha plates, as determined from three-dimensional atom probe (3DAP) coupled with energy-filtered transmission electron microscopy (EFTEM). Slower cooling resulted in near-equilibrium eutectoid-based microstructures.  相似文献   
72.
A large-signal method based on non-sinusoidal voltage excitation model is used to study the DC and RF characteristics of Double Avalanche Region (DAR) Silicon Transit Time diode. A large-signal simulation program based on drift-diffusion model is developed for this study. The simulation results show the existence of several distinct negative conductance bands in the admittance characteristics separated by positive conductance. Thus the DAR device is capable of delivering RF power not only at the design frequency but also at several frequency bands higher than the design frequency band in the mm-wave regime. A comparative study with DDR Si device designed to deliver RF power at a particular mm-wave frequency band shows that DAR Si device is capable of delivering significantly higher RF power not only at the designed mm-wave frequency band, but also at higher frequency bands.  相似文献   
73.
74.
The role of methods of blend preparation on polymer-polymer compatibility was investigated. Three different types of methods of blending, such as solution-casting, melt-mixing, and coprecipitation, were applied for three types of blend systems, viz., poly(vinyl chloride-co-vinyl acetate) (VYHH)/polystyrene (PS), VYHH/poly(styrene-co-acrylonitrile) (SAN), and VYHH/poly(methyl methacrylate) (PMMA) by measuring their glass transition temperatures (Tg) by a differential scanning calorimeter (DSC). It has been found that compatibility of the polymers depends on the method of blending and compatibility also varies from one blend system to another. Among the various types of blending methods, the coprecipitation method of blending gives the best compatibility result. © 1996 John Wiley & Sons, Inc.  相似文献   
75.
Sulfuration of natural rubber (NR) by the binary accelerator 2-mercaptobenzothiazole (MBT) and diphenylguanidine (DPG) both in presence and in absence of ZnO and stearic acid with or without dicumylperoxide (DCP) was studied in detail. It was observed that the rate of decomposition of DCP in presence of both MBT and DPG is quite similar to that with MBT alone. The reduction of crosslinking depends also on MBT only. Through DPG has no influence on the decomposition rate, it reacts with MBT during the vulcanization process and suppresses the retardation caused by MBT on the DCP vulcanization. In accordance with the initial additiveness of crosslinking in systems containing DCP, the free sulfur decrease, and the rapidity of crosslink formation the vulcanization process of MBT-DPG-S-NR systems was interpreted in terms of a polar mechanism induced by the complex MSH2NR′R″. In mixtures containing DCP together with sulfur, MBT, DPG, ZnO, and stearic acid, the initial stage of crosslinking is additive as indicated by a mixed reaction as well as by a methyl iodide treatment of the vulcanizates. Comparison with single accelerators shows a pronounced synergistic effect. This is because of the enhanced activity of the MBT-ZnO-stearic acid complex due to DPG which also induces polar sulfuration of NR by forming the active complex MSH2NR′R″. In presence of ZnO and stearic acid, DCP cannot increase the net crosslink density but suppresses the reversion so much pronounced in its absence.  相似文献   
76.
The class of dynamics in pool boiling on a large-size heater is assessed under subcooled pool boiling conditions. Transient surface temperature measurements are obtained using surface micro-machined K-type thin film thermocouples (TFT) in 10 °C subcooled pool boiling experiments on a 62.23 mm diameter silicon wafer using PF-5060 as the test liquid. Surface temperature data is obtained at each steady state condition to generate the boiling curve. The fraction of false-nearest neighbors, recurrence plots and space–time separation plots are obtained using the TISEAN package. The correlation dimension is then estimated from the re-constructed phase space data using a naïve algorithm. The correlation dimension varies from ~11.2 to 11.5 near onset of nucleate boiling (ONB), to ~7–10 in fully developed nucleate boiling (FDNB) ~7–9 near critical heat flux (CHF) condition, and from ~6.6 to 7.7 in film boiling. False-nearest neighbor estimates and recurrence plots show that nucleate boiling may be dominated by statistical processes near ONB and in partial nucleate boiling (PNB). In contrast, FDNB, CHF and film boiling seem chaotic and governed by deterministic processes.  相似文献   
77.
Air cooled steam condensers (ACSC) consist of finned-tube arrays bundled in an A-frame structure. Inefficient performance under extreme temperature operating conditions is a common problem in ACSCs. The purpose of this study was to improve the heat transfer characteristics of an annular finned-tube system for better performance in extreme climatic conditions. Perforations were created on the surface of the annular fins to increase heat transfer coefficient (h). Mesh generation and finite volume analyses were performed using Gambit 2.4.6 and Fluent 6.3 with an RNG k? turbulent model to calculate pressure drop (ΔP), heat flux (q), and heat transfer coefficient (h). Solid (no perforations) finned-tubes were simulated with free stream velocity ranging between 1 m/s–5 m/s and validated with the published data. Computations were performed for perforations at 30° interval starting at ±60°, ±90°, ±120°, ±150°, and ±180° from the stagnation point. Five cases with single perforation and three cases with multiple perforations were evaluated for determining the maximum q and h, as well as minimum ΔP. For the perforated case (perforations starting from 60° at interval of 30°), the fin q and h performance ratios increased by 5.96% and 7.07%, respectively. Consequently, the fin ΔP performance ratio increased by 11.87%. Thus, increased q and h is accompanied with a penalty of higher ΔP. In contrast, a single perforation location at 120° provided favorable results with a 1.70% and 2.23% increase in q and h performance ratios, respectively, while there was a relatively smaller increase (only 1.39%) of ΔP performance ratio. Perforations in the downstream region at ±120°, ±150°, and ±180° also resulted in a similar favorable outcome. Furthermore, the spacing of the fins along the arms of an A-frame ACSC was altered to decrease ΔP across the finned-tube array. Fin spacing in the A-frame structure with sparsely spaced fins in the center resulted in a 1.80% reduction in ΔP. Thus, penalty in ΔP for a perforated fin can possibly be offset by changing the fin spacing along the arms of an A-frame structure.  相似文献   
78.
The current work explores the usage of novel synthesized Deep Eutectic Solvent (DES) as a catalyst cum solvent media for the thermal dehydrogenation of chemical hydrides, namely Ammonia Borane (AB) and Ethylene diamine bisborane (EDAB). In the first instance, the quantum chemistry based COSMO-SAC (COnductor like Screening MOdel Segment Activity Coefficient) model was used for the selection of the pertinent solvent. 1-Butyl-3-methylimidazolium methanesulfonate: Imidazole ([BMIM][MeSO3]:[Im]) turned out to be an ideal eutectic mixture with the highest predicted solubility with amine boranes. The DES was synthesized by combining the Hydrogen Bond Acceptor (HBA), namely 1-Butyl-3-methylimidazolium methanesulfonate and Imidazole as Hydrogen Bond Donor (HBD) at a molar ratio of 1:2 and T = 70 °C. The formation of DES was confirmed by recording the NMR spectra. Further, the thermal dehydrogenation study was performed at a vacuum of 4 × 10?2 mbar (gauge pressure) of AB/DES and EDAB/DES systems at 105 °C, where a hydrogen equivalent of 1.40 and 2.55 was produced, respectively. The residual samples were further analyzed through 1H NMR analysis for the reaction mechanism and to confirm the role of Ionic Liquid-based DES as catalyst cum solvent media.  相似文献   
79.
Supported iron oxides have been established as an important class of catalyst for high temperature sulfuric acid decomposition. With an objective to elucidate the role of support in modifying the overall catalytic properties of dispersed iron oxide catalysts, a series of supported iron oxide based catalysts, Fe2O3 (15 wt%)/MO2 (M = Zr, Ce, Ti and Si), synthesized by adsorption-equilibrium method, is investigated for sulfuric acid decomposition reaction. The structure of dispersed iron oxide phases largely depended on the nature of the support oxide as revealed by the XRD and Mössbauer studies. α-Fe2O3 is found to be present as a major phase on ZrO2 and CeO2 support while ε-Fe2O3 was the major phase on silica supported iron oxide. On the other hand, presence of mixed oxide Fe2TiO5 was revealed over TiO2 support. Strong dispersed metal oxide-support interactions inhibited the total reduction of the dispersed phase on SiO2 and TiO2 as compared to complete reduction of dispersed iron oxide on CeO2 and ZrO2 supports during temperature programmed reduction upto 1000 °C. The order of catalytic activity at a temperature of ~750 °C is observed as Fe2O3/SiO2 > Fe2TiO5/TiO2 > Fe2O3/ZrO2 > Fe2O3/CeO2, while at higher temperatures of ~900 °C the SO2 yield is found to be comparable for all catalysts. A relationship between the rate of sulfate decomposition and catalytic activity is established through detailed TG-DTA investigations of sulfated catalyst and support. Considerable influence of the support oxide on the composition, structure, redox properties, morphology and catalytic activities of the active iron oxide dispersed phase has been observed. Thus, the support oxides operate as a critical component in the complex supported metal oxide catalysts and these findings might influence the design and development of future high temperature sulfuric acid decomposition catalysts.  相似文献   
80.
We have demonstrated earlier that maximum H2 generated @ 1.167 l/h/m2 over Cu0.02Ti0.98O2-δ photocatalyst with apparent quantum efficiency, AQE of 7.5% and solar fuel efficiency, SFE of 3.9% under sunlight. With an aim to scale-up the solar photocatalytic hydrogen process to pilot plant, optimization studies at lab scale as well as in upscaled photoreactors were performed over Cu0.02Ti0.98O2-δ, photocatalyst under UV/visible and sunlight. Cu0.02Ti0.98O2-δ was synthesized by facile sol-gel route and characterized by relevant techniques. Several operational parameters were investigated in order to finalize the conditions which are most favourable for photocatalytic hydrogen yield. Factors such as photocatalyst loadings, v/v concentration of sacrificial reagent, replacement of methanol by industrial waste glycerol, role of different configuration of light source with reactor, effect of stirring during the photocatalytic reaction, effect of fluctuations of solar flux at hourly basis, illumination area on hydrogen yield were studied. Contribution of each factor in determining the hydrogen yield was quantified. Relative standard deviation in hydrogen yield as a function of each factor was estimated. Our findings suggest that in addition to catalyst loadings and sacrificial reagent, improved dispersion of photocatalyst obtained by stirring the reaction mixture in horizontal geometry resulted in enhanced H2 yield. Hydrogen yield obtained at lab scale can be appropriately extrapolated with respect to illumination area instead of weight of photocatalyst. A relative standard deviation (RSD) of ± 3.82% and ± 4.53% in H2 yield was calculated for sunny and cloudy days in time zone of 10.30–16.30 h IST. Deviation of H2 yield was more on cloudy days and beyond 16:30 h. These studies have provided a daily window of 11:00–15:00 h to be utilized throughout the year for a commercial scaled up process, prohibiting the illumination during less productive hours of the day for shaping the improved economics of solar hydrogen generation. Our results obtained at lab scale would be useful to perform sunlight driven scaled –up photocatalytic process using low cost visible light efficient photocatalyst, Cu0.02Ti0.98O2-δ.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号