3Z,6Z,9Z-Nonadecatriene (3Z,6Z,9Z-19:H; other abbreviations follow the same pattern) has been identified as a female sex pheromone component of the geometrid mothEpirrhoe sperryi (H.). 3Z,6Z,9Z-18:H and 6Z,9Z-19:H were also identified in pheromone gland extracts but had no apparent biological activity. 3Z,6Z,9Z-21:H was tentatively identified as a female sex pheromone component of a second geometrid species,Lobophora nivigerata (Wlk.). Attraction of male moths to this compound was strongly synergized by the addition of small amounts of 6Z,9Z-21:H to lures.Issued as NRC No. 32478. 相似文献
ABSTRACT Electrodewatering (EDW), the enhancement of conventional pressure filtration by an electric field, is an emerging technology with the potential to improve dewatering especially for difficult materials. CSIRO has many years of experience in EDW, ranging from bench scale tests to demonstration trials. A recent programme has investigated the applicability of EDW to aerobic wastewater treatment sludges which are particularly difficult to dewater using conventional equipment. The bench scale filtration experiments produced cakes with solids contents of 35-46 wt% using EDW, compared with 24-30 wt% using pressure filtration alone. This paper : ? describes how the dewatering results were achieved; ?identifies a relationship between moisture removal limits by EDW and the forms of water within the sludge; ?shows the results of preliminary attempts to mathematically model the EDW process 相似文献
The holdup and bubble size distribution (BSD) in bubble columns using both air/water and an industrially relevant air/fermentation media system are investigated. It was found that the BSD in the air/fermentation media system was quite narrow and did not change with height. In contrast, the BSD in the air/water system varied considerably with height depending on the sparger design used. Holdup measurements were also performed for different superficial velocities. The holdup in the air/fermentation media system was greater than that for the air/water system, a result attributed to the presence of surface‐active compounds in the fermentation media. 相似文献
A numerical simulation of an enzyme-catalyzed oxygen cathode is presented and applied to the analysis of transport limitations in operating electrodes, with the goal of predicting the limits of obtainable cathode current density. Based on macrohomogeneous and thin-film theories, and accounting for dual-substrate enzyme kinetics, the one-dimensional model predicts a maximum current density of about 9.2 mA cm−2 at 0.6 V (SHE) for a 300 μm thick electrode operating oxygen-saturated pH 5 buffer at 37 °C and relying on diffusion of dissolved oxygen alone. However, by introducing gas-phase diffusive transport, or alternatively a convective, flow-through approach, the model predicts that electrodes of identical thickness may provide current densities up to 60 mA cm−2 in air and exceeding 100 mA cm−2 in pure O2. Such performance would move enzyme electrodes closer to practical implementation in implantable power devices and other low-temperature fuel cells such as direct methanol fuel cells. 相似文献
The dissolution rates of poly(methyl methacrylate) [PMMA] thin films on quartz substrates are studied by a combination of laser interferometry and fluorescence quenching methods. In this way one can monitor the penetration, rate of the solvent (2-butanone, 2-pentanone) into the film. When these films were prepared containing 2 to 8 percent Meldrum's diazo (1) as a dopant, the dopant acted as a mild retarder of film dissolution. Upon irradiation at 254 nm, 1 is converted to CO, N2 + acetone, and this process leads to a pronounced acceleration' of the PMMA film dissolution rate. 相似文献
A multi-component NOx-trap catalyst consisting of Pt and K supported on γ-Al2O3 was studied at 250 °C to determine the roles of the individual catalyst components, to identify the adsorbing species during the lean capture cycle, and to assess the effects of H2O and CO2 on NOx storage. The Al2O3 support was shown to have NOx trapping capability with and without Pt present (at 250 °C Pt/Al2O3 adsorbs 2.3 μmols NOx/m2). NOx is primarily trapped on Al2O3 in the form of nitrates with monodentate, chelating and bridged forms apparent in Diffuse Reflectance mid-Infrared Fourier Transform Spectroscopy (DRIFTS) analysis. The addition of K to the catalyst increases the adsorption capacity to 6.2 μmols NOx/m2, and the primary storage form on K is a free nitrate ion. Quantitative DRIFTS analysis shows that 12% of the nitrates on a Pt/K/Al2O3 catalyst are coordinated on the Al2O3 support at saturation.
When 5% CO2 was included in a feed stream with 300 ppm NO and 12% O2, the amount of K-based nitrate storage decreased by 45% after 1 h on stream due to the competition of adsorbed free nitrates with carboxylates for adsorption sites. When 5% H2O was included in a feed stream with 300 ppm NO and 12% O2, the amount of K-based nitrate storage decreased by only 16% after 1 h, but the Al2O3-based nitrates decreased by 92%. Interestingly, with both 5% CO2 and 5% H2O in the feed, the total storage only decreased by 11%, as the hydroxyl groups generated on Al2O3 destabilized the K–CO2 bond; specifically, H2O mitigates the NOx storage capacity losses associated with carboxylate competition. 相似文献
A method to quantify DRIFT spectral features associated with the in situ adsorption of gases on a NOx adsorber catalyst, Pt/K/Al2O3, is described. To implement this method, the multicomponent catalyst is analysed with DRIFT and chemisorption to determine that under operating conditions the surface comprised a Pt phase, a pure γ-Al2O3 phase with associated hydroxyl groups at the surface, and an alkalized-Al2O3 phase where the surface –OH groups are replaced by –OK groups. Both DRIFTS and chemisorption experiments show that 93–97% of the potassium exists in this form. The phases have a fractional surface area of 1.1% for the 1.7 nm-sized Pt, 34% for pure Al2O3 and 65% for the alkalized-Al2O3. NO2 and CO2 chemisorption at 250 °C is implemented to determine the saturation uptake value, which is observed with DRIFTS at 250 °C. Pt/Al2O3 adsorbs 0.087 μmol CO2/m2and 2.0 μmol NO2/m2, and Pt/K/Al2O3 adsorbs 2.0 μmol CO2/m2and 6.4 μmol NO2/m2. This method can be implemented to quantitatively monitor the formation of carboxylates and nitrates on Pt/K/Al2O3 during both lean and rich periods of the NOx adsorber catalyst cycle. 相似文献
Chameleonic properties, i. e., the capacity of a molecule to hide polarity in non-polar environments and expose it in water, help achieving sufficient permeability and solubility for drug molecules with high MW. We present models of experimental measures of polarity for a set of 24 FDA approved drugs (MW 405-1113) and one PROTAC (MW 1034). Conformational ensembles in aqueous and non-polar environments were generated using molecular dynamics. A linear regression model that predicts chromatographic apparent polarity (EPSA) with a mean unsigned error of 10 Å2 was derived based on separate terms for donor, acceptor, and total molecular SASA. A good correlation (R2=0.92) with an experimental measure of hydrogen bond donor potential, Δlog Poct-tol, was found for the mean hydrogen bond donor SASA of the conformational ensemble scaled with Abraham's A hydrogen bond acidity. Two quantitative measures of chameleonic behaviour, the chameleonic efficiency indices, are introduced. We envision that the methods presented herein will be useful to triage designed molecules and prioritize those with the best chance of achieving acceptable permeability and solubility. 相似文献