首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   712篇
  免费   42篇
电工技术   13篇
综合类   3篇
化学工业   126篇
金属工艺   8篇
机械仪表   8篇
建筑科学   14篇
矿业工程   2篇
能源动力   12篇
轻工业   106篇
水利工程   3篇
石油天然气   3篇
无线电   39篇
一般工业技术   91篇
冶金工业   213篇
原子能技术   8篇
自动化技术   105篇
  2023年   8篇
  2022年   5篇
  2021年   14篇
  2020年   18篇
  2019年   10篇
  2018年   31篇
  2017年   25篇
  2016年   31篇
  2015年   31篇
  2014年   28篇
  2013年   45篇
  2012年   32篇
  2011年   31篇
  2010年   24篇
  2009年   25篇
  2008年   25篇
  2007年   26篇
  2006年   14篇
  2005年   12篇
  2004年   13篇
  2003年   7篇
  2002年   13篇
  2001年   12篇
  1999年   10篇
  1998年   80篇
  1997年   46篇
  1996年   27篇
  1995年   19篇
  1994年   14篇
  1993年   17篇
  1992年   6篇
  1991年   5篇
  1990年   7篇
  1988年   4篇
  1985年   1篇
  1984年   3篇
  1983年   1篇
  1982年   3篇
  1981年   3篇
  1979年   1篇
  1977年   8篇
  1976年   6篇
  1975年   1篇
  1974年   1篇
  1973年   2篇
  1972年   1篇
  1971年   1篇
  1970年   1篇
  1968年   1篇
  1966年   1篇
排序方式: 共有754条查询结果,搜索用时 343 毫秒
131.
The development of artificial vesicles into responsive architectures capable of sensing the biological environment and simultaneously signaling the presence of a specific target molecule is a key challenge in a range of biomedical applications from drug delivery to diagnostic tools. Herein, the rational design of biomimetic DNA-grafted quatsome (QS) nanovesicles capable of translating the binding of a target molecule to amphiphilic DNA probes into an optical output is presented. QSs are synthetic lipid-based nanovesicles able to confine multiple organic dyes at the nanoscale, resulting in ultra-bright soft materials with attractiveness for sensing applications. Dye-loaded QS nanovesicles of different composition and surface charge are grafted with fluorescent amphiphilic nucleic acid-based probes to produce programmable FRET-active nanovesicles that operate as highly sensitive signal transducers. The photophysical properties of the DNA-grafted nanovesicles are characterized and the highly selective, ratiometric detection of clinically relevant microRNAs with sensitivity in the low nanomolar range are demonstrated. The potential applications of responsive QS nanovesicles for biosensing applications but also as functional nanodevices for targeted biomedical applications is envisaged.  相似文献   
132.
Potassium/ammonium salts of 12-molybdophosphoric acid were modified by the addition of an Sb5+ salt. The addition of antimony led to a remarkable increase in the thermal structural stability of the compounds obtained. The incipient destruction of the Keggin unit in the mixed potassium/ammonium salt of 12-molybdophosphoric acid was shifted from 400–420°C to 500°C. The potassium salt modified by the addition of one Sb5+ atom per KU decomposed at temperatures higher than 600°C. This property allowed the samples to be used as catalysts for high temperature, gas-phase oxidation reactions, such as the oxidehydrogenation of ethane. The compounds did not undergo structural decomposition at temperatures as high as 540°C under reaction conditions, but were poorly active and selective in ethylene formation. Therefore, antimony-stabilized compounds were further modified by the addition of transition metal ions in order to improve the catalytic performance. The addition of small amounts of iron, chromium and cerium ions led to an improvement of the catalytic performance; the compound was apparently monophasic, and characterized by the cubic crystalline structure typical of the salts of 12-molybdophosphoric acid.On leave from the Institute of Chemical Physics, Academy of Sciences, Russia.  相似文献   
133.
Phytochromes are bilin‐containing photoreceptors that are typically sensitive to the red/far‐red region of the visible spectrum. Recently, phytochromes from certain eukaryotic algae have become attractive targets for optogenetic applications because of their unique ability to respond to multiple wavelengths of light. Herein, a combination of time‐resolved spectroscopy and structural approaches across picosecond to second timescales have been used to map photochemical mechanisms and structural changes in this atypical group of phytochromes. The photochemistry of an orange/far‐red light‐sensitive algal phytochrome from Dolihomastix tenuilepis has been investigated by using a combination of visible, IR and X‐ray scattering probes. The entire photocycle, correlated with accompanying structural changes in the cofactor/protein, are reported. This study identifies a complex photocycle for this atypical phytochrome. It also highlights a need to combine outcomes from a range of biophysical approaches to unravel complex photochemical and macromolecular processes in multi‐domain photoreceptor proteins that are the basis of biological light‐mediated signalling.  相似文献   
134.
In this paper we report an overview of the main outcomes of a 3-years experimental cultivation carried out in an Italian reclaimed agricultural field amended with different types of zeolitites (rock containing > 50% of zeolites), under cereals cultivation (Sorghum vulgare Pers, Zea mays and Triticum durum). The aim of the experiment was to exploit the properties of zeolite-rich volcanic rocks (zeolitites) for reducing the excessively high NO3? content in the soil and in waters flowing out the sub-surface drainage system of the field and flushing into the surface water system, reducing concomitantly also chemical fertilization application rates (up to 50%). Zeolitites were tested both in their natural state and in a NH4+-enriched form, obtained through an enrichment process with NH4+-rich zoo-technical effluents (pig slurry). NO3? content in soils and in waters discharged through SSDS were periodically monitored during the experimentation and crop yield quantified. Results showed that, for three consecutive cultivation cycles, the overall NO3? concentrations in water extracts was reduced by 45% in the zeolitite treated soils, while in SSDS waters the reduction reached the 64%. Notwithstanding the lower N input from chemical fertilizers, crop yield was not negatively affected in the zeolitite amended soils with respect to the control. Zeolitite addition increased thus soil NH4+ retention and probably influenced several pathways of N losses, allowing a better fertilizer use efficiency by plants and a reduction of the overall NO3? concentrations in the surface waters.  相似文献   
135.
Glaucoma affects millions of people worldwide and causes optic nerve damage and blindness. The elevation of the intraocular pressure (IOP) is the main risk factor associated with this pathology, and decreasing IOP is the key therapeutic target of current pharmacological treatments. As potential ocular hypotensive agents, we studied compounds that act on two receptors (serotonin 2A and adrenergic α1) linked to the regulation of aqueous humour dynamics. Herein we describe the design, synthesis, and pharmacological profiling of a series of novel bicyclic and tricyclic N2‐alkyl‐indazole‐amide derivatives. This study identified a 3,4‐dihydropyrazino[1,2‐b]indazol‐1(2H)‐one derivative with potent serotonin 2A receptor antagonism, >100‐fold selectivity over other serotonin subtype receptors, and high affinity for the α1 receptor. Moreover, upon local administration, this compound showed superior ocular hypotensive action in vivo relative to the clinically used reference compound timolol.  相似文献   
136.
The present study deals with the consolidation of an ultra‐high performance polymer, the poly(ether ether ketone) (PEEK), for structural applications, using the powder metallurgy (PM) way, and more precisely the Spark Plasma Sintering (SPS) processing. The effects of SPS parameters such as temperature, pressure, and dwell time on density and mechanical properties of PEEK were investigated via a Design of Experiments (DoE). A temperature of 250 °C, a pressure of 40 MPa, and a dwell time of 20 min have been identified as the optimal SPS process parameters. In these conditions, a density of 1.31 g / cm3 was reached and homogeneous mechanical properties in the volume determined by means of compression tests were found with a compressive modulus of 2.75 GPa, a yield strength of 134 MPa, and a maximum compressive strain of 43%. These results are better than those of commercial products obtained by injection molding. The pressure appears to be a significant parameter on PEEK properties and plays positive or negative roles according to the responses of DoE studied. To our knowledge, it is one of the first studies based on the application of the PM techniques for PEEK consolidation showing the possibility to process below its melting point. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44911.  相似文献   
137.
Seamless tubes are used for various mechanical applications, often produced by several cold drawing steps to reach the required dimensions. The first process step, for example, extrusion or rolling, typically results in ovality and eccentricity of the tube caused by nonsymmetric material flow and being present during the cold drawing process, i.e., no homogeneous deformation. Because of this nonsymmetrical deformation, and deviations over the length of the tube caused by moving tools, this process step generates inhomogeneous residual stresses. To understand the interconnection between geometrical changes in the tubes and the resulting residual stresses, the residual strain distribution in a copper tube was measured by neutron diffraction. The aim of this study is to evaluate residual stresses generated during cold drawing of copper tubes. This research comprises experimental measurements and numerical analysis. An industrially produced copper tube was cold drawn, and the profile of residual strain over circumference and across wall thickness was measured by neutron diffraction. In parallel, a three-dimensional finite-element model (FEM) was developed to calculate the residual macrostress state generated by the forming process. Good agreement between experimental results and numerical computations was obtained. This article is based on a presentation given in the symposium entitled “Neutron and X-Ray Studies for Probing Materials Behavior,” which occurred during the TMS Spring Meeting in New Orleans, LA, March 9–13, 2008, under the auspices of the National Science Foundation, TMS, the TMS Structural Materials Division, and the TMS Advanced Characterization, Testing, and Simulation Committee.  相似文献   
138.
The effects of a high hydrostatic pressure (HHP) treatment (450MPa, 15min at 20°C) on both the microbiological quality and the functional properties of plasma from biopreserved porcine blood were evaluated. Blood was inoculated with Enterococcus raffinosus-PS99 (10(7)ufcmL(-1)) and stored at 5°C. After 72-h storage, bacterial counts in inoculated samples decreased by 52, 70, 81 and more than 99% for coliforms, Pseudomonas spp, hemolytic and proteolytic bacteria, respectively. Counts of these bacterial groups were undetectable in the final product after pressurization, whereas total lactic acid bacteria were detected at levels up to 10(2)ufcmL(-1). Gelling, foaming and emulsifying properties of the plasma proteins were not noticeably affected by HHP. The results show that it is possible to obtain high-quality and microbiologically stable blood derivatives as functional ingredients, by combining biopreservation and HHP.  相似文献   
139.
The realization of multiway group communications and scaleable IP switching over ATM networks requires merging of virtual connections to be possible. This capability, known as VC merging, cannot be provided by ATM networks which use a standard ATM protocol stack. This paper describes CLIMAX, a simple and efficient solution that allows for VC merging while keeping the typical advantages of cell‐switching. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   
140.
A detailed stratigraphic investigation of the intercalation mechanism when graphite electrodes are immersed inside diluted perchloric(HClO4)and sulfuric(H2SO4)electrolytes is obtained by comparing results when graphite crystals are simply immersed in the same acid solutions.By combining time-of-flight secondary ion mass spectrometry(ToF-SIMS)and in-situ atomic force microscopy(AFM),we provide a picture of the chemical species involved in the intercalation reaction.The depth intensity profile of the ion signals along the electrode crystal clearly shows a more complex mechanism for the intercalation process,where the local morphology of the basal plane plays a crucial role.Solvated anions are mostly located within the first tens of nanometers of graphite,but electrolytes also diffuse inside the buried layers for hundreds of nanometers,the latter process is also aided by the presence of mesoscopic crystal defects.Residual material from the electrolyte solution was found localized in well-defined circular spots,which represent preferential interaction areas.Interestingly,blister-like micro-structures similar to those observed on the highly oriented pyrolytic graphite(HOPG)surface were found in the buried layers,confirming the equivalence of the chemical condition on the graphite surface and in the underneath layers.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号