首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   43篇
  免费   0篇
化学工业   12篇
机械仪表   1篇
建筑科学   3篇
轻工业   4篇
无线电   3篇
一般工业技术   7篇
冶金工业   2篇
自动化技术   11篇
  2023年   3篇
  2022年   2篇
  2021年   2篇
  2020年   1篇
  2018年   1篇
  2015年   1篇
  2014年   1篇
  2013年   4篇
  2012年   5篇
  2010年   5篇
  2009年   2篇
  2008年   6篇
  2007年   1篇
  2006年   4篇
  2005年   1篇
  2004年   1篇
  2003年   1篇
  2002年   1篇
  1997年   1篇
排序方式: 共有43条查询结果,搜索用时 6 毫秒
41.
Hybrid nanocomposite films of titanium dioxide (TiO2) in polyimide (PI) from 2,5-bis(4-aminophenyl)-1,3,4-oxadiazole (BAO) and 4,4′-oxydiphthalic anhydride (ODPA) have been successfully fabricated by an in situ sol-gel process. These nanocomposite films exhibit fair good optical transparency up to 40 wt% of TiO2 content. X-ray diffraction spectroscopy shows three sharp peaks in pure BAO-ODPA PI. It results from the intermolecular regularity. However, the intermolecular regularity in the hybrid film is disrupted by the introduction of TiO2 nanoparticles with no sharp peak in XRD spectra. Fourier transform infrared (FTIR) and X-ray photoelectron spectroscopy (XPS) results confirm the formation of TiO2 particles in PI matrix. The surface Ti content is much lower than the theoretical bulk content in all hybrid films. The ratio of the former to the latter increases with the TiO2 content and levels off at TiO2 wt%≥20. Transmission electron microscope (TEM) images show that the TiO2 phase is well dispersed in the polymer matrix. The size of the TiO2 phase increases from 10 to 40 nm when the TiO2 content is 5-30 wt%, respectively.  相似文献   
42.
This research focuses on developing a reliable methodology for predicting the performance of buoyancy-driven ventilation in atrium buildings during the design stage using both computational fluid dynamics (CFD) and scale model tests. The results show several features. First, the agreement between CFD simulation and measurement results in the heated zone is better with rng k? and zero-equation turbulent schemes; whereas, in the atrium space, the laminar and zero-equation CFD models provide better results. Second, the external ambient temperature has a larger effect on the temperature distribution in the atrium space than the thermal load inside the building. Third, the position of the stack openings that create a direct ventilation path can improve the internal thermal environment. The size of the stack openings also affects the temperature distribution in the atrium space. Lastly, due to the small temperature difference in hot and humid climates, a buoyancy-only ventilation strategy is not very effective in such a situation. That is, when a low-rise atrium building is situated in a hot and humid environment, additional efforts such as wind-driven ventilation, wind-buoyancy ventilation or mechanically driven ventilation will be necessary to achieve the thermal comfort desired.  相似文献   
43.
Platelet-rich fibrin (PRF) is a natural fibrin meshwork material with multiple functions that are suitable for tissue engineering applications. PRF provides a suitable scaffold for critical-size bone defect treatment due to its platelet cytokines and rich growth factors. However, the structure of PRF not only promotes cell attachment but also, due to its density, provides a pool for cell migration into the PRF to facilitate regeneration. In our study, we used repeated freeze drying to enlarge the pores of PRF to engineer large-pore PRF (LPPRF), a type of PRF that has expanded pores for cell migration. Moreover, a biodegradable Mg ring was used to provide stability to bone defects and the release of Mg ions during degradation may enhance osteoconduction and osteoinduction. Our results revealed that cell migration was more extensive when LPPRF was used rather than when PRF was used and that LPPRF retained the growth factors present in PRF. Moreover, the Mg ions released from the Mg ring during degradation significantly enhanced the calcium deposition of MC3T3-E1 preosteoblasts. In the present study, a bone substitute comprising LPPRF combined with a Mg ring was demonstrated to have much potential for critical-size bone defect repair.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号