首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5031篇
  免费   163篇
  国内免费   11篇
电工技术   51篇
综合类   1篇
化学工业   926篇
金属工艺   87篇
机械仪表   86篇
建筑科学   296篇
矿业工程   18篇
能源动力   132篇
轻工业   458篇
水利工程   43篇
石油天然气   38篇
武器工业   1篇
无线电   274篇
一般工业技术   853篇
冶金工业   992篇
原子能技术   20篇
自动化技术   929篇
  2023年   32篇
  2022年   40篇
  2021年   83篇
  2020年   74篇
  2019年   63篇
  2018年   91篇
  2017年   72篇
  2016年   122篇
  2015年   88篇
  2014年   160篇
  2013年   347篇
  2012年   241篇
  2011年   320篇
  2010年   222篇
  2009年   192篇
  2008年   255篇
  2007年   232篇
  2006年   189篇
  2005年   191篇
  2004年   138篇
  2003年   129篇
  2002年   130篇
  2001年   80篇
  2000年   72篇
  1999年   79篇
  1998年   100篇
  1997年   107篇
  1996年   73篇
  1995年   73篇
  1994年   53篇
  1993年   68篇
  1992年   77篇
  1991年   44篇
  1990年   50篇
  1989年   55篇
  1988年   49篇
  1987年   48篇
  1986年   56篇
  1985年   70篇
  1984年   57篇
  1983年   68篇
  1982年   48篇
  1981年   35篇
  1980年   45篇
  1979年   61篇
  1978年   45篇
  1977年   45篇
  1976年   37篇
  1975年   37篇
  1973年   25篇
排序方式: 共有5205条查询结果,搜索用时 15 毫秒
41.
We present, for the first time, the design of a low-cross talk scalable permutation switch employing photonic crystal ring resonators in an optical network. Through this novel approach, the transition between different states of the \(2 \times 2\) optical switch, as the basic element, is achieved by applying different operating wavelengths. Subsequently, the shuffling mechanisms in \(3 \times 3\) and \(4 \times 4\) optical networks are realized by controlling the position of photonics crystal ring resonators. Lowest cross talk levels of 6 and 5% are obtained for “bar” and “cross” switching states, respectively.  相似文献   
42.
43.
The rapidly increasing solar conversion efficiency (PCE) of hybrid organic–inorganic perovskite (HOIP) thin-film semiconductors has triggered interest in their use for direct solar-driven water splitting to produce hydrogen. However, application of these low-cost, electronic-structure-tunable HOIP tandem photoabsorbers has been hindered by the instability of the photovoltaic-catalyst-electrolyte (PV+E) interfaces. Here, photolytic water splitting is demonstrated using an integrated configuration consisting of an HOIP/n+silicon single junction photoabsorber and a platinum (Pt) thin film catalyst. An extended electrochemical (EC) lifetime in alkaline media is achieved using titanium nitride on both sides of the Si support to eliminate formation of insulating silicon oxide, and as an effective diffusion barrier to allow high-temperature annealing of the catalyst/TiO2-protected-n+silicon interface necessary to retard electrolytic corrosion. Halide composition is examined in the (FA1-xCsx)PbI3 system with a bandgap suitable for tandem operation. A fill factor of 72.5% is achieved using a Spiro-OMeTAD-hole-transport-layer (HTL)-based HOIP/n+Si solar cell, and a high photocurrent density of −15.9 mA cm−2 (at 0 V vs reversible hydrogen electrode) is attained for the HOIP/n+Si/Pt photocathode in 1 m NaOH under simulated 1-sun illumination. While this thin-film design creates stable interfaces, the intrinsic photo- and electro-degradation of the HOIP photoabsorber remains the main obstacle for future HOIP/Si tandem PEC devices.  相似文献   
44.
A new class of organic dielectrics, benzocyclobutenes, 1, are described and their application to the fabrication of thin film multichip modules is detailed. Key properties for3, a siloxy containing BCB derivative include low dielectric constant (2.7), low loss (0.008 at 1 MHz), low water absorption (0.25% after 24 h water boil) and high degree of planarization (>90% from one layer coverage). All other properties meet the requirements necessary for fabrication of thin film MCM structures.  相似文献   
45.
A novel approach to muscle fatigue assessment is proposed. A function is used to map multiple myoelectric parameters representing segments of myoelectric data to a fatigue estimate for that segment. An artificial neural network is used to tune the mapping function and time-domain features are used as inputs. Two fatigue tests were conducted on five participants in each of static, cyclic and random conditions. The function was tuned with one data set and tested on the other. Performance was evaluated based on a signal to noise metric which compared variability due to fatigue factors with variability due to nonfatiguing factors. Signal to noise ratios for the mapping function ranged from 7.89 under random conditions to 9.69 under static conditions compared to 3.34-6.74 for mean frequency and 2.12-2.63 for instantaneous mean frequency indicating that the mapping function tracks the myoelectric manifestations of fatigue better than either mean frequency or instantaneous mean frequency under all three contraction conditions.  相似文献   
46.
This paper reports the result of a study on the effect of aluminum pad surface morphology on the flip-chip solder bump reliability. The influence of the Al surface morphology on the electroless zinc/nickel/gold UBM is presented. The reliability of the solder bump as measured by ball shear force is reported. Al pad were produced using two RF sputtering systems: CVC-601 and Varian-3180. The Al targets used in CVC and Varian system were 99%Al–1%Si and 98.95%Al–1%Si–0.05%Ti respectively. The surface of the CVC sputtered Al samples were smooth while the surface of the Varian sputtered Al samples were rough. All the samples were subjected to the electroless zinc/nickel/gold plating. The results suggest that after plating, the smooth Al surface resulted in a fine nickel UBM surface while the rough Al surface formed a coarse nickel UBM surface. Ball shear test was conducted after the solder balls were bumped on the UBM. Result shows that the fine UBM surface samples have twice the shear strength compared to the samples with coarse UBM surface samples. The analysis of the results indicates that shear surface occurred at the UBM and the solder interface for samples with rough UBM surface leading to the lower shear strength. Nickel bump shear test result shows that pretreatment of Al pad surface by sodium hydroxide and nitric acid created more zinc seeds this led to better electroless nickel plating. Nickel bump shear tests also shows that double zincated bumps had higher shear strength than single zincated bumps. To obtain reliable flip-chip solder bumps, it is essential to maintain good Al pad surface morphology, pretreatment of the Al pad and undergo second zincation.  相似文献   
47.
Hard ferromagnetic (L10 phase) FePt alloy nanoparticles (NPs) with extremely high magnetocrystalline anisotropy are considered to be one of the most promising candidates for the next generation of ultrahigh‐density data storage system. The question of how to generate ordered patterns of L10‐FePt NPs and how to transform the technology for practical applications represents a key current challenge. Here the direct synthesis of L10 phase FePt NPs by pyrolysis of Fe‐containing and Pt‐containing metallopolymer blend without post‐annealing treatment is reported. Rapid single‐step fabrication of large‐area nanodot arrays (periodicity of 500 nm) of L10‐ordered FePt NPs can also be achieved by employing the metallopolymer blend, which possesses excellent solubility in most organic solvents and good solution processability, as the precursor through nanoimprint lithography (NIL). Magnetic force microscopy (MFM) imaging of the nanodot pattern indicates that the patterned L10 phase FePt NPs are capable of exhibiting decent magnetic response, which suggests a great potential to be utilized directly in the fabrication of bit patterned media (BPM) for the next generation of magnetic recording technology.  相似文献   
48.
Polycrystalline thin films of silver antimony selenide have been deposited using a reactive evaporation technique onto an ultrasonically cleaned glass substrate at a vacuum of 10-5 torr. The preparative parameters, like substrate temperature and incident fluxes, have been properly controlled in order to get stoichiometric, good quality and reproducible thin film samples. The samples are characterized by XRD, SEM, AFM and a UV-vis-NIR spectrophotometer. The prepared sample is found to be polycrystalline in nature. From the XRD pattern, the average particle size and lattice constant are calculated. The dislocation density, strain and number of crystallites per unit area are evaluated using the average particle size. The dependence of the electrical conductivity on the temperature has also been studied and the prepared AgSbSe2 samples are semiconducting in nature. The AgSbSe2 thin films exhibited an indirect allowed optical transition with a band gap of 0.64 eV. The compound exhibits promising thermoelectric properties, a large Seebeck coefficient of 30 mV/K at 48 K due to strong phonon electron interaction. It shows a strong temperature dependence on thermoelectric properties, including the inversion of a dominant carrier type from p to n over a low temperature range 9-300 K, which is explained on the basis of a phonon drag effect.  相似文献   
49.
The development of new flexible and stretchable sensors addresses the demands of upcoming application fields like internet‐of‐things, soft robotics, and health/structure monitoring. However, finding a reliable and robust power source to operate these devices, particularly in off‐the‐grid, maintenance‐free applications, still poses a great challenge. The exploitation of ubiquitous temperature gradients, as the source of energy, can become a practical solution, since the recent discovery of the outstanding thermoelectric properties of a conductive polymer, poly(3,4‐ethylenedioxythiophene)‐poly(styrenesulfonate) (PEDOT:PSS). Unfortunately the use of PEDOT:PSS is currently constrained by its brittleness and limited processability. Herein, PEDOT:PSS is blended with a commercial elastomeric polyurethane (Lycra), to obtain tough and processable self‐standing films. A remarkable strain‐at‐break of ≈700% is achieved for blends with 90 wt% Lycra, after ethylene glycol treatment, without affecting the Seebeck voltage. For the first time the viability of these novel blends as stretchable self‐powered sensors is demonstrated.  相似文献   
50.
The surface and interface properties of Pd0.9Cr0.1/SiC Schottky diode gas sensors both before and after annealing are investigated using Auger electron spectroscopy (AES), scanning electron microscopy (SEM), and energy dispersive spectroscopy (EDS). At room temperature the alloy reacted with SiC and formed PdxSi only in a very narrow interfacial region. After annealing for 250 h at 425°C, the surface of the Schottky contact area has much less silicon and carbon contamination than that found on the surface of an annealed Pd/SiC structure. Palladium silicides (PdxSi) formed at a broadened interface after annealing, but a significant layer of alloy film is still free of silicon and carbon. The chromium concentration with respect to palladium is quite uniform down to the deep interface region. A stable catalytic surface and a clean layer of Pd0.9Cr0.1 film are likely responsible for significantly improved device sensitivity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号