Shapes provide a rich set of clues on the identity and topological properties of an object. In many imaging environments, however, the same object appears to have different shapes due to distortions such as translation, rotation, reflection, scaling, or skewing. Further, the order by which the object's feature points are scanned changes, i.e., the order of the pixels may be permuted. Relating two-dimensional shapes of the same object distorted by different affine and permutation transformations is a challenge. We introduce a shape invariant that we refer to as the intrinsic shape of an object and describe an algorithm, BLAISER, to recover it. The intrinsic shape is invariant to affine-permutation distortions. It is a uniquely defined representative of the equivalence class of all affine-permutation distortions of the same object. BLAISER computes the intrinsic shape from any arbitrarily affine-permutation distorted image of the object, without prior knowledge regarding the distortions or the undistorted shape of the object. The critical step of BLAISER is the determination of the shape orientation and we provide a detailed discussion on this topic. The operations of BLAISER are based on low-order moments of the input shape and, thus, robust to error and noise. Examples illustrate the performance of the algorithm. 相似文献
The crystallization and electrical characterization of the semiconducting polymer poly(3‐hexylthiophene) (P3HT) on a single layer graphene sheet is reported. Grazing incidence X‐ray diffraction revealed that P3HT crystallizes with a mixture of face‐on and edge‐on lamellar orientations on graphene compared to mainly edge‐on on a silicon substrate. Moreover, whereas ultrathin (10 nm) P3HT films form well oriented face‐on and edge‐on lamellae, thicker (50 nm) films form a mosaic of lamellae oriented at different angles from the graphene substrate. This mosaic of crystallites with π–π stacking oriented homogeneously at various angles inside the film favors the creation of a continuous pathway of interconnected crystallites, and results in a strong enhancement in vertical charge transport and charge carrier mobility in the thicker P3HT film. These results provide a better understanding of polythiophene crystallization on graphene, and should help the design of more efficient graphene based organic devices by control of the crystallinity of the semiconducting film. 相似文献
Organic–inorganic metal halide perovskite solar cells have emerged in the past few years to promise highly efficient photovoltaic devices at low costs. Here, temperature‐sensitive core–shell Ag@TiO2 nanoparticles are successfully incorporated into perovskite solar cells through a low‐temperature processing route, boosting the measured device efficiencies up to 16.3%. Experimental evidence is shown and a theoretical model is developed which predicts that the presence of highly polarizable nanoparticles enhances the radiative decay of excitons and increases the reabsorption of emitted radiation, representing a novel photon recycling scheme. The work elucidates the complicated subtle interactions between light and matter in plasmonic photovoltaic composites. Photonic and plasmonic schemes such as this may help to move highly efficient perovskite solar cells closer to the theoretical limiting efficiencies. 相似文献
In this work, crystallization kinetics and aggregate growth of poly(3‐ethylhexylthiophene) (P3EHT) thin films are studied as a function of film thickness. X‐ray diffraction and optical absorption show that individual aggregates and crystallites grow anisotropically and mostly along only two packing directions: the alkyl stacking and the polymer chain backbone direction. Further, it is also determined that crystallization kinetics is limited by the reorganization of polymer chains and depends strongly on the film thickness and average molecular weight. Time‐dependent, field‐effect hole mobilities in thin films reveal a percolation threshold for both low and high molecular weight P3EHT. Structural analysis reveals that charge percolation requires bridged aggregates separated by a distance of ≈2–3 nm, which is on the order of the polymer persistence length. These results thus highlight the importance of tie molecules and inter‐aggregate distance in supporting charge percolation in semiconducting polymer thin films. The study as a whole also demonstrates that P3EHT is an ideal model system for polythiophenes and should prove to be useful for future investigations into crystallization kinetics. 相似文献
The paper reports all-organic strain and stress sensitive films that use electrical monitoring approach. The films were prepared by self-metallizing polycarbonate films with the single component molecular conductor [Au(α-tpdt)2]0 (tpdt = 2,3-thiophenedithiolate). It was shown that [Au(α-tpdt)2]0 by its nature is able to form metallic solid material with low crystallinity. Electromechanical tests demonstrated that the developed films are strain-resistive materials with advanced elastic properties: their electrical resistance varies linearly with uniaxial elongation up to relative strain being of 1.0% that is about five times larger than that for conventional metals. The gauge factor of the films is 4.4 and stress sensitivity is 30 Ω/bar. The processing characteristics of polycarbonate films, self-metalized with a metallic [Au(α-tpdt)2]0-based layer, make them potentially useful for engineering flexible, lightweight, strain and pressure sensors. Due to electromechanical characteristics these films are suited to strain sensing applications requiring miniature strain control in a wide deformation range. 相似文献
A series of poly(N‐isopropylacrylamide)‐coated mesoporous silica nanoparticle materials (PNiPAm‐MSNs) has been synthesized by a surface‐initiated living radical polymerization with a reversible addition–fragmentation chain transfer (RAFT) reaction. The structure and the degree of polymerization of the PNiPAm‐MSNs has been characterized by a variety of techniques, including nitrogen sorption analysis, 29Si and 13C solid‐state NMR spectroscopy, transmission electron microscopy (TEM), and powder X‐ray diffraction (XRD). The thermally induced changes of the surface properties of these polymer‐coated core–shell nanoparticles have been determined by examining their partition activities in a biphasic solution (water/toluene) at different temperatures. 相似文献
There is little consensus on what constitutes open, deliberative media discourse. We offer a simple, measurable, and comparative model based on 3 aspects of source and issue construction in news accounts: access, recognition, and responsiveness. The model is applied to coverage of 2001–2003 World Economic Forum (WEF) meetings and protests against the organization's role in global economic policies. Both demonstrators and WEF participants were granted news access, but WEF actors were recognized more formally and given greater input in news content, including ownership claims to many activist issue positions. Journalistic deference to the WEF communication agenda limited mutual responsiveness. The journalistic process systematically managed the debate about globalization on terms that favored elites over citizen-activists. 相似文献
The concept of network caching is determined to be the potential requirement of named data networks (NDN) for enhancing the capabilities of the traditional IP networking. It is responsible for location independent data accesses and optimal bandwidth utilization in multi-path data dissemination. However, the network caching process in NDN introduces security challenges such as content cache poisoning, malicious injection or flooding of the packets and violation in accessing content packets. In this paper, an Improved Merkle Hash Tree-based one-time signature scheme for capability-enhanced security enforcing architecture (IMHT-OTSS-CSEA) is proposed for provisioning data authenticity in a distributed manner for leveraging the capabilities to inform the access privileges of the packets during the process of data dissemination. It is proposed for permitting the routers to verify the forwarded packets’ authenticity in NDN. It is capable in handling the issues that emerge from unsolicited packets during a flooding-based denial of service attacks by supporting the indispensable verification process in routers that confirms the timeliness of packets. The simulation experiments conducted using the open source CCNs platform and Planetlab confirmed a significant mean reduction in delay of 14.61%, superior to the benchmarked schemes. It is identified to minimize the delay incurred in generating bit vectors by a average margin of 13.06%, excellent to the baseline approaches. It also confirmed a mean increase in the true positive rate of 5.42%, a mean increase in the precision rate of 6.04%, decrease in false positive rate of 6.82% and increase in F-measure of 5.62% compared to the baseline approaches in the context of detecting content cache pollution attack respectively.
Through time domain observation, typical wireless signal strength values seems to exhibit some forms of mean-reverting and discontinuous “jumps” behaviour. Motivated by this fact, we propose a wireless link prediction and triggering (LPT) technique using a modified mean-reverting Ornstein–Uhlenbeck (OU) jump diffusion process. The proposed technique which we refer as OU-LPT is an integral component of wireless mesh network monitoring system developed by ICT FP7 CARrier grade wireless MEsh Network project. In particular, we demonstrate how this technique can be applied in the context of wireless mesh networks to support link switching or handover in the event of predicted link degradation or failure. The proposed technique has also been implemented and evaluated in a real-time experimental testbed. The results show that OU-LPT technique can significantly enhance the reliability of wireless links by reducing the rate of false triggers compared to a conventional linear prediction technique and therefore offers a new direction on how wireless link prediction, triggering and switching process can be conducted in the future. 相似文献