首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5897篇
  免费   62篇
  国内免费   6篇
电工技术   61篇
综合类   12篇
化学工业   889篇
金属工艺   54篇
机械仪表   68篇
建筑科学   103篇
矿业工程   22篇
能源动力   120篇
轻工业   336篇
水利工程   29篇
石油天然气   21篇
无线电   387篇
一般工业技术   697篇
冶金工业   2424篇
原子能技术   37篇
自动化技术   705篇
  2024年   40篇
  2023年   53篇
  2022年   122篇
  2021年   150篇
  2020年   102篇
  2019年   126篇
  2018年   104篇
  2017年   96篇
  2016年   136篇
  2015年   93篇
  2014年   143篇
  2013年   236篇
  2012年   197篇
  2011年   239篇
  2010年   163篇
  2009年   151篇
  2008年   151篇
  2007年   147篇
  2006年   138篇
  2005年   115篇
  2004年   105篇
  2003年   99篇
  2002年   94篇
  2001年   50篇
  2000年   48篇
  1999年   118篇
  1998年   635篇
  1997年   421篇
  1996年   288篇
  1995年   178篇
  1994年   129篇
  1993年   169篇
  1992年   46篇
  1991年   49篇
  1990年   47篇
  1989年   53篇
  1988年   52篇
  1987年   44篇
  1986年   37篇
  1985年   48篇
  1984年   17篇
  1983年   24篇
  1982年   27篇
  1981年   28篇
  1980年   39篇
  1979年   24篇
  1978年   22篇
  1977年   90篇
  1976年   171篇
  1975年   22篇
排序方式: 共有5965条查询结果,搜索用时 15 毫秒
991.
The lateral mobility of the thiolate ligands on the surface of Au nanoparticles was probed by EPR spectroscopy. This was achieved by using bisnitroxide ligands, which contained a disulfide group (to ensure attachment to the Au surface) and a cleavable ester bridge connecting the two spin-labeled branches of the molecule. Upon adsorption of these ligands on the surface of Au nanoparticles, the two spin-labeled branches were held next to each other by the ester bridge as evidenced by the spin-spin interactions. Cleavage of the bridge removed the link that kept the branches together. CW and pulsed EPR (DEER) experiments showed that the average distance between the adjacent thiolate branches on the Au nanoparticle surface only marginally increased after cleaving the bridge and thermal treatment. This implies that the lateral diffusion of thiolate ligands on the nanoparticle surface is very slow at room temperature and takes hours even at elevated temperatures (90 degrees C). The changes in the distance distribution observed at high temperature are likely due to ligands hopping between the nanoparticles rather than diffusing on the particle surface.  相似文献   
992.
A series of 2d-hexagonally packed mesoporous silica nanoparticle material with 10 nm pore diameter (MSN-10) covalently functionalized with organic surface modifiers have been synthesized via a post-synthesis grafting method. The material structure has been characterized by powder X-ray diffraction, electron microscopy, and nitrogen sorption analyses, and the free fatty acid (FFA) sequestration capacity and selectivity was investigated and quantified by thermogravimetric and GC/MS analysis. We discovered that aminopropyl functionalized 10 nm pore mesoporous silica nanoparticle material (AP-MSN-10) sequestered all available FFAs and left nearly all other molecules in solution from a simulated microalgal extract containing FFAs, sterols, terpenes, and triacylglycerides. We also demonstrated selective FFA sequestration from commercially available microalgal oil.  相似文献   
993.
The modeling of the interaction between piezoelectric wafer active sensors (PWAS) and structural waves and vibration is addressed. Three main issues are discussed: (a) modeling of pitch-catch ultrasonic waves between a PWAS transmitter and a PWAS receiver by comparison between exact Lamb wave solutions and various finite element method (FEM) results; (b) analytical modeling of the power and energy transduction between PWAS and ultrasonic guided waves highlighting the tuning opportunities between PWAS and the waves; (c) the use of the transfer matrix method to model the electromechanical (E/M) impedance method for direct reading of high-frequency local structural vibration and comparison with FEM results. The paper ends with a summary and conclusions followed by recommendations for further work.  相似文献   
994.
995.
The synthesis, characterization and corrosion properties of a novel material, produced by the reaction of silica nanoparticles with a functionalized Phenol-Formaldehyde Resin (PFR), are presented. Carboxylic groups were attached in situ to the PFR skeleton to produce a functionalized resin (PFR-SA), which is then reacted with sol-gel-prepared silica nanoparticles, yielding a novel hybrid (organic/inorganic) material (PFR-SA-nanoSiO2). This hybrid material was characterized by FT-IR, FT-Raman, TGA, DSC, SEM and corrosion tests, whose results showed significant improvement of the thermal properties in comparison with the PFR coating. In addition, the new material was efficient and durable against corrosion of metals, with the anticorrosive performance of PFR-SA and PFR-SA/nanoSiO2 coating films being superior to those of the original PFR coating.  相似文献   
996.
This paper reports preliminary results of industrial size (152 mm target O.D.) rotatable magnetron sputtering of Al target in direct current (DC) and High Power Impulse Magnetron Sputtering (HIPIMS) modes using two standard commercially available magnetic arrays: standard strength array (as used for DC and AC processing) and a lower strength ‘RF’ array [i.e. as used for radio frequency (RF) magnetron sputtering]. A comparison of processes resulted in by combining the different magnetic arrays and power modes is made in terms of magnetic field distribution on the cathode surface, magnetron characteristics, process characteristics and deposition rates.Optical emission spectroscopy (OES) revealed enhanced sputtered Al flux ionisation in the HIPIMS discharge monitored 64 mm away from the target surface when using the ‘RF’ array. Importantly, the results of this work (at the processing conditions investigated) demonstrate that at the same average power the deposition rate of Al using HIPIMS in conjunction with the ‘RF’ array is substantially the same as that obtained for the ‘standard’ strength balanced array and DC power. This indicates that the magnetic field design of the ‘RF’ magnetic array affects favourably the sputtered flux transport perpendicular to the target surface by altering mass transport direction and minimising effects that reduce deposition rate (e.g. ion return effect). Arc rate is also reduced significantly (approximately ten times) if the low strength ‘RF’ array is used.  相似文献   
997.
We studied a mesoporous silica nanosphere (MSN) material with tunable release capability for drug delivery applications. We employed luciferase chemiluminescence imaging to investigate the kinetics and mechanism of the adenosine 5-triphosphate (ATP) release with various disulfide-reducing agents as uncapping triggers. ATP molecules were encapsulated within the MSNs by immersing dry nanospheres in aqueous solutions of ATP followed by capping of the mesopores with chemically removable caps, such as cadmium sulfide (CdS) nanoparticles and poly(amido amine) dendrimers (PAMAM), via a disulfide linkage. By varying the chemical nature of the 'cap' and 'trigger' molecules in our MSN system, we discovered that the release profiles could indeed be regulated in a controllable fashion.  相似文献   
998.
We introduce transverse diffusion of laminar flow profiles (TDLFP), the first generic method for mixing two or more reactants inside capillaries. Conceptually, solutions of reactants are injected inside the capillary by pressure as a series of consecutive plugs. Due to the laminar nature of flow inside the capillary, the nondiffused plugs have parabolic profiles with predominantly longitudinal interfaces between them. After injection, the plugs are mixed by transverse diffusion; longitudinal diffusion does not contribute to mixing. To prove the principle, we used TDLFP to mix two reactants-an enzyme and its substrate. After mixing the reactants by TDLFP, we incubated reaction mixtures for different periods of time and measured the reaction kinetics. We found that the reaction proceeded in time- and concentration-dependent fashion, thus confirming that the reactants were mixed by TDLFP. Remarkably, the experimental reaction kinetics were not only in qualitative agreement but also in good quantitative agreement with theoretically predicted ones. TDLFP has a number of enabling features. By facilitating the preparation of reaction mixtures inside the capillary, TDLFP lowers reagent consumption to nanoliters (microliters are required for conventionally mixing reagents in a vial). The reaction products can be then analyzed "on-line" by capillary separation coupled with optical, electrochemical, or mass spectrometric detection. The combination of TDLFP with capillary separation will be an indispensable tool in screening large combinatorial libraries for affinity probes and drug candidates: a few microliters of a target protein will be sufficient to screen thousands of compounds. The new method paves the road to a wide use of capillary nanoreactors in different areas of physical and life sciences.  相似文献   
999.
Oxygen-impurity boron-doped hydrogenated microcrystalline silicon (p-μc-Si:Ox:H) films have been deposited using catalytic chemical vapor deposition (Cat-CVD). Pure silane (SiH4), hydrogen (H2), oxygen (O2), and diluted diborane (B2H6) gases were used. The tungsten catalyst temperature (Tfil) was varied from 1900 to 2100 °C and films were deposited on glass substrates at temperatures of 100 to 300 °C. Different catalyst-to-substrate distances were employed and single- or double-coiled filaments were used. In addition to p-μc-Si:Ox:H deposition, we have also deposited conventional p-type microcrystalline silicon (p-μc-Si:H) in order to compare their electrical and optical properties to p-μc-Si:Ox:H.  相似文献   
1000.
Internalization of biocompatible magnetic nanoparticles by red blood cells (RBCs) is a key issue for opportunities of new applications in the biomedical field. In this study, we used in vitro tests to provide evidences of magnetic nanoparticle internalization by mice red blood cells. The internalization process depends upon the nanoparticle concentration and the nanoparticle hydrodynamic radii. The cell internalization of surface-coated maghemite nanoparticles was indirectly tracked by Raman spectroscopy and directly observed using transmission electron microscopy. The observation of nanoparticle cell uptaking using in vitro experiments represents an important breakthrough for the application of nanomagnetism in diagnosis and therapy of RBC-related diseases.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号