首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2739篇
  免费   5篇
  国内免费   1篇
电工技术   3篇
综合类   1篇
化学工业   29篇
金属工艺   10篇
机械仪表   2篇
建筑科学   3篇
能源动力   1篇
轻工业   27篇
石油天然气   1篇
武器工业   1篇
无线电   31篇
一般工业技术   12篇
冶金工业   2610篇
原子能技术   2篇
自动化技术   12篇
  2019年   2篇
  2018年   2篇
  2017年   3篇
  2014年   3篇
  2013年   4篇
  2012年   3篇
  2011年   5篇
  2010年   1篇
  2009年   6篇
  2008年   5篇
  2007年   6篇
  2006年   1篇
  2005年   2篇
  2004年   8篇
  2003年   5篇
  2002年   2篇
  2001年   5篇
  2000年   7篇
  1999年   79篇
  1998年   812篇
  1997年   463篇
  1996年   291篇
  1995年   147篇
  1994年   138篇
  1993年   162篇
  1992年   28篇
  1991年   34篇
  1990年   33篇
  1989年   41篇
  1988年   37篇
  1987年   30篇
  1986年   26篇
  1985年   29篇
  1983年   9篇
  1982年   18篇
  1981年   20篇
  1980年   17篇
  1978年   8篇
  1977年   58篇
  1976年   176篇
  1975年   2篇
  1974年   1篇
  1973年   2篇
  1971年   2篇
  1970年   1篇
  1969年   1篇
  1968年   3篇
  1967年   2篇
  1964年   1篇
  1955年   1篇
排序方式: 共有2745条查询结果,搜索用时 15 毫秒
91.
A facile approach to locally concentrate analytes of interest will significantly enhance miniaturized, integrated chemical‐analysis systems. Here, the directed analyte transport and concentration using ≈200 µm‐diameter E‐jet printed chemical potential wells in a polyacrylamide hydrogel is demonstrated. Using a cationic well as the model system, anionic analytes are accumulated into a microscale area with a local concentration enhancement of >50‐fold relative to the surrounding area. By downscaling the diameter of the chemical potential well from a few millimeters to 100s of micrometers, it is found, using both fluorescence and Raman microscopy, that the molecular collection capacity of the well is greatly improved. Additionally, it is shown that molecules can be simultaneously transported and concentrated to arrays of microscale regions using an array of microscale chemical potential wells. This approach enhances many‐fold the limit of detection, enables the formation of microscale potential well arrays with a variety of chemical properties, and provides a novel microscale molecular manipulation technique as an alternative to traditional microfluidic‐based systems.  相似文献   
92.
Using glycerinated spasmoneme of giant Zoothamnium sp., the physical properties of spasmoneme before and after Ca2+-induced contraction (pCa 4.5) were investigated. The volume change of spasmoneme contraction was measured under zero tension. The length and diameter decreased by about 50% of their initial value as a result of contraction, which means that contraction is nearly isotropic. Thus the volume of spasmoneme decreased drastically by 86% of its original value. The swollen ratio of extended and contracted spasmoneme were 0.07 and 0.37, respectively. Tension-extension relationships of extended and contracted spasmonemes were measured. By applying the theory of rubber elasticity, the number of segments of a chain in originally extended spasmoneme was only 3.3, i.e., the chain was almost a straight one. On the other hand, the number of segments of a chain in contracted spasmoneme was more than 100, i.e., the chain was essentially a random one. Furthermore, the total number of chains in single spasmoneme was the same in extended and contracted spasmoneme. This means that the interchain cross-links of chains were not influenced by addition or removal of Ca2+. Moreover, the molecular weight of a chain is estimated to be at most about 50 kd. By considering all these results, it is concluded that the contractile mechanism of spasmoneme originates in the intramolecular folding and unfolding induced by Ca2+ binding and detaching.  相似文献   
93.
The most common strategy in the development of HIV-1 protease inhibitors has been the design of high affinity transition state analogs that effectively compete with natural substrates for the active site. A second approach has been the development of compounds that inactivate the protease by destabilizing its quaternary or tertiary structure. A successful optimization of these strategies requires an accurate knowledge of the energetics of structural stabilization and binding, and the identification of those regions in the protease molecule that are critical to stability and function. Here the energetics of stabilization of the HIV-1 protease has been measured for the first time by high sensitivity differential scanning calorimetry. These studies have permitted the evaluation of the different components of the Gibbs energy of stabilization (the enthalpy, entropy and heat capacity changes). The stability of the protease is pH-dependent and due to its dimeric nature is also concentration-dependent. At pH 3.4 the Gibbs energy of stabilization is close to 10 kcal/mol at 25 degreesC, consistent with a dissociation constant of 5x10(-8) M. The stability of the protease increases at higher pH values. At pH 5, the Gibbs energy of stabilization is 14.5 kcal/mol at 25 degreesC, consistent with a dissociation constant of 2.3x10(-11) M. The pH dependence of the Gibbs energy of stabilization indicates that between pH 3.4 and pH 5 an average of 3-4 ionizable groups per dimer become protonated upon unfolding. A structure-based thermodynamic analysis of the protease molecule indicates that most of the Gibbs energy of stabilization is provided by the dimerization interface and that the isolated subunits are intrinsically unstable. The Gibbs energy, however, is not uniformly distributed along the dimerization interface. The dimer interface is characterized by the presence of clusters of residues (hot spots) that contribute significantly and other regions that contribute very little to subunit association. At the dimerization interface, residues located at the carboxy and amino termini contribute close to 75% of the total Gibbs energy (Cys95, Thr96, Leu97, Asn98 and Phe99 and Pro1, Ile3, Leu5). Residues Thr26, Gly27 and Asp29 located at the base of the active site are also important, and to a lesser extent Gly49, Ile50, Gly51 located at the tip of the flap region. The structure-based thermodynamic analysis also predicts the existence of regions of the protease with only marginal stability and a high propensity to undergo independent local unfolding. In particular, the flap region occupies a very shallow energy minimum and its conformation can easily be affected by relatively small perturbations. This property of the protease can be related to the ability of some mutations to elicit resistance towards certain inhibitors.  相似文献   
94.
Anoikis is a form of programmed cell death induced in normal epithelial cells by detachment from the extracellular matrix [1] [2] [3]. In epithelial cells of the intestine and other organs, activated rasinduces resistance to anoikis [3] [4], but the actual molecular effectors directly involved in the apoptotic machinery that execute or block anoikis have not yet been identified. Bak, a pro-apoptotic member of the Bcl-2 family, is downregulated in a high proportion of colorectal tumours [5]. In addition, Bak is an important regulator of apoptosis in normal intestinal epithelial cells [6] [7]. Here, we show that activated rasinduces the downregulation of Bak in rat and human intestinal epithelial cells. This ras-induced downregulation of Bak expression could be suppressed by an inhibitor of phosphatidylinositol (PI) 3-kinase, an enzyme already implicated in ras-induced resistance to anoikis [8]. Ectopic expression of Bak in ras-transformed rat intestinal epithelial IEC-18 cells inhibited ras-induced resistance to anoikis and significantly reduced their tumorigenicity. We conclude, therefore, that the ability of rasto downregulate Bak, and the consequent resistance to anoikis, are essential components of the transforming capacity of this oncogene in intestinal epithelial cells.  相似文献   
95.
In the past two decades, many technical advances have made tube enteral feeding much more comfortable and acceptable to patients and their families. This has greatly expanded the use of this therapy, both in clinical conditions where it was traditionally prescribed and in many other diagnoses. This expanded use raises important questions about how much enteral nutrition is being used, the medical outcome in different clinical conditions, and the quality of life experienced by long-term therapy users. This article addresses these outcome issues for patients in the nonhospital setting.  相似文献   
96.
97.
98.
Neuronal migration anomalies are a spectrum of brain malformations caused by insults to migrating neuroblasts during the sixth week to fifth month of gestation. To study the characteristics of MRI findings in migration anomalies, MR images of 36 patients (28 children and 8 adults) with migration anomalies were evaluated. Five patients had lissencephaly, eight had pachygyria, twelve had schizencephaly, six had heterotopias of gray matter, three had hemimegalencephaly, and two had polymicrogyria. The frequency of migration anomalies was 0.51% of all cranial MRI studies and 1.21% of pediatric cranial MRI studies at our hospital. The major clinical presentations of these patients were seizure (64%), development delay (42%), motor deficits (42%) and mental retardation (25%). Twenty-five patients (69%) associated with other brain anomalies, including: other migration anomalies in 12 cases (33%), absence of the septum pellucidum in 10 cases (28%), Dandy-Walker malformation/variant in 5 cases, arachnoid cyst in 4 cases, agenesis of the corpus callosum in 3 cases, holoprosencephaly in 2 cases, mega cisterna magna in 1 case and cephalocele in 1 case. Some of them presented with multiple complicated anomalies. As MR imaging provides superb gray-white matter distinction, details of cortical anatomy and multiplanar capability, it can clearly delineate the detail morphologic changes of the brain caused by neuronal migration disorders as well as the associated anomalies.  相似文献   
99.
100.
A new method was developed for binding poly-(ethylene oxide) (PEO) to polymer surfaces that involves the use of electron beam irradiation in two steps. In the first, methacrylic acid was grafted and polymerized to a polymer surface, changing it from hydrophobic to hydrophilic. Exposure of this surface to aqueous PEO solutions resulted in strong hydrogen bonding of the PEO, which was covalently grafted in a second radiation step. The PEO grafts were stable; they could not be removed with extensive washing with water, soaking in basic solution, or gentle mechanical scraping. Both monolayers and multilayers of PEO were formed. The density of the monolayers were found to have little dependence on the molecular weight or concentration of the PEO solution; multilayers could be controlled by varying the viscosity of the PEO solution and the method of application. The PEO-grafted monolayers were tested for their ability to prevent protein adsorption of cytochrome-c, albumin, and fibronectin. Monolayers of star PEO were the most effective, at best showing a 60% decrease in adsorption from untreated controls. One million molecular wight linear PEO monolayers were almost as effective as star monolayers, and 35,000 g/mol linear PEO was bound too closely to the surface, owing to its small size, to have much impact in preventing protein adsorption. The reason for the continued protein adsorption was believed to be due to a close grafting of the PEO to the surface, as well as the grafted methacrylic acid chains being long enough to extend through the PEO monolayer, thus being accessible on the surface.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号