首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3677篇
  免费   187篇
  国内免费   11篇
电工技术   63篇
综合类   3篇
化学工业   613篇
金属工艺   102篇
机械仪表   210篇
建筑科学   62篇
矿业工程   3篇
能源动力   131篇
轻工业   230篇
水利工程   10篇
石油天然气   3篇
无线电   562篇
一般工业技术   594篇
冶金工业   937篇
原子能技术   34篇
自动化技术   318篇
  2024年   4篇
  2023年   40篇
  2022年   44篇
  2021年   83篇
  2020年   77篇
  2019年   76篇
  2018年   97篇
  2017年   100篇
  2016年   103篇
  2015年   90篇
  2014年   138篇
  2013年   148篇
  2012年   189篇
  2011年   220篇
  2010年   181篇
  2009年   192篇
  2008年   145篇
  2007年   150篇
  2006年   116篇
  2005年   114篇
  2004年   99篇
  2003年   89篇
  2002年   80篇
  2001年   65篇
  2000年   66篇
  1999年   86篇
  1998年   301篇
  1997年   215篇
  1996年   118篇
  1995年   91篇
  1994年   60篇
  1993年   65篇
  1992年   29篇
  1991年   33篇
  1990年   33篇
  1989年   27篇
  1988年   27篇
  1987年   18篇
  1986年   12篇
  1985年   11篇
  1983年   4篇
  1982年   3篇
  1981年   5篇
  1980年   1篇
  1978年   3篇
  1977年   9篇
  1976年   12篇
  1975年   3篇
  1973年   1篇
  1972年   1篇
排序方式: 共有3875条查询结果,搜索用时 15 毫秒
51.
To verify three important circuit schemes suitable for DRAMs in mobile applications, a 1.8-V 128-Mb SDRAM was implemented with a 0.15-/spl mu/m technology. To achieve an ideal 33% efficiency, the double boosting pump uses two capacitor's series connection at pumping phase, while they are precharged in parallel. The hybrid folded current sense amplifier together with a novel replica inverter connection improved power and speed performances. Also, a dual-referenced adjustment scheme for a temperature sensor was proposed to allow a very high accuracy in tuning. Without loss in productivity, the implemented dual-referenced searching technique achieved tuning error of less than /spl plusmn/2.5/spl deg/C.  相似文献   
52.
35 GHz integrated circuit rectifying antenna with 33% efficiency   总被引:1,自引:0,他引:1  
Yoo  T.W. Chang  K. 《Electronics letters》1991,27(23):2117
A 35 GHz integrated circuit rectifying antenna (rectenna) has been developed using a microstrip dipole antenna and beam-lead mixer diode. Greater than 33% conversion efficiency has been achieved. The circuit should have applications in microwave/millimetre-wave power transmission and detection.<>  相似文献   
53.
By studying thermal behavior of all-MBE surface-emitting lasers, barrier heights and optimum cavity design parameters are obtained. The barrier heights for holes between hetero-interfaces of Al0.3Ga0.7As-Al0.65Ga0.35As and AlAs-Al0.65Ga0.35As (Δx=-0.35) are measured to be 77 meV at zero bias for the deep-red top-surface-emitting laser. The barrier height decreases linearly with forward bias voltage, explaining the nonlinearity in current-voltage characteristics of the top-surface-emitting laser. The contribution of electrons to electrical resistance is estimated to be negligibly small compared to that of holes for the structure consisting of Δx =0.35. Minimum threshold current and maximum differential quantum efficiency observed around 200 K indicate slight mismatch between gain maximum and Fabry-Perot resonance for the deep-red top-surface-emitting laser  相似文献   
54.
Hydrogen peroxide (H2O2) is one of essential oxygen metabolites in living organisms, but is generated in large amounts during inflammatory responses. Therefore, H2O2 has great potential as diagnostic and therapeutic markers of several inflammatory and life‐threatening diseases. Here, chemiluminescent and antioxidant micelles are reported as novel theranostic agents for H2O2‐associated inflammatory diseases. The chemiluminescent micelles composed of amphiphilic block copolymer Pluronic F‐127, hydroxybenzyl alcohol‐incorporated copolyoxalate (HPOX) and fluorescent dyes perform peroxalate chemiluminescence reactions to detect H2O2 as low as 100 nM and image H2O2 generated in inflamed mouse ankles. The micelles encapsulating HPOX reduce the generation of reactive oxygen species in lipopolysaccharide (LPS)‐activated macrophages by scavenging overproduced H2O2 and releasing antioxidant hydroxybenzyl alcohol (HBA). They also exert inhibitory effects on H2O2‐induced apoptosis. HPOX‐based chemiluminescent and antioxidant micelles have great potential as a theranostic agent for H2O2‐associated inflammatory diseases.  相似文献   
55.
The structural and electrical characteristics of Ag/Ni bilayer metallization on polycrystalline thermoelectric SnSe were investigated. Two difficulties with thermoelectric SnSe metallization were identified for Ag and Ni single layers: Sn diffusion into the Ag metallization layer and unexpected cracks in the Ni metallization layer. The proposed Ag/Ni bilayer was prepared by hot-pressing, demonstrating successful metallization on the SnSe surface without interfacial cracks or elemental penetration into the metallization layer. Structural analysis revealed that the Ni layer reacts with SnSe, forming several crystalline phases during metallization that are beneficial for reducing contact resistance. Detailed investigation of the Ni/SnSe interface layer confirms columnar Ni-Sn intermetallic phases [(Ni3Sn and Ni3Sn2) and Ni5.63SnSe2] that suppress Sn diffusion into the Ag layer. Electrical specific-contact resistivity (5.32 × 10?4 Ω cm2) of the Ag/Ni bilayer requires further modification for development of high-efficiency polycrystalline SnSe thermoelectric modules.  相似文献   
56.
We report low voltage driving and highly efficient blue phosphorescence organic light emitting diodes (PHOLEDs) fabricated by soluble process. A soluble small molecule mixed host system consisting of hole transporting 4,4’,4’’ tris(N-carbazolyl)triphenylamine (TCTA) and bipolar carrier transporting 2,6-bis(3-(carbazol-9-yl)phenyl)pyridine (26DCzPPy) exhibits high solubility with smooth surface properties. Moreover, this small molecule host shows the smoothest morphological property similar to a vacuum deposited amorphous film. A low driving voltage of 5.4 V at 1000 cd/m2 and maximum external quantum efficiency 14.6% obtained in the solution processed blue PHOLEDs are useful for large area low cost manufacturing.  相似文献   
57.
In this study, we have investigated sensitivities of the ion implanted silicon wafers processed by rapid thermal annealing (RTA), which can reveal the variation of sheet resistance as a function of annealing temperature as well as implantation parameters. All the wafers were sequentially implanted by the arsenic or phosphorous implantations at 40, 80, and 100 keV with the dose level of 1014 to 2 × 1016 ions/cm2. Rapid thermal annealing was carried out for 10 s by the infrared irradiation at a temperature between 850 and 1150°C in the nitrogen ambient. The activated wafer was characterized by the measurements of the sheet resistance and its uniformity mapping. The values of sensitivities are determined from the curve fitting of the experimental data to the fitting equation of correlation between the sheet resistance and process variables. From the sensitivity values and the deviation of sheet resistance, the optimum process conditions minimizing the effects of straggle in process parameters are obtained. As a result, a strong dependence of the sensitivity on the process variables, especially annealing temperatures and dose levels is also found. From the sensitivity analysis of the 10 s RTA process, the optimum values for the implant dose and annealing temperature are found to be in the range of 1016 ions/cm2 and 1050-1100°C, respectively. The sensitivity analysis of sheet resistance will provide valuable data for accurate activation process, offering a guideline for dose monitoring and calibration of ion implantation process.  相似文献   
58.
AlxGa1-xN (x=0.05) ultraviolet (UV) avalanche photodiodes grown on a GaN substrate are reported. The epitaxial structure was grown by metal-organic chemical vapor deposition on a free-standing bulk GaN substrate having low dislocation density. The growth conditions for AlxGa1-xN epitaxial layers on GaN substrates were optimized to achieve improved crystalline and structural quality. With UV illumination at lambda~250 nm, devices with mesa diameters of ~30 mum achieve stable maximum optical gains of ~50 at a reverse bias voltage of ~87 V.  相似文献   
59.
This paper proposes and demonstrates optical 3R regeneration techniques for high-performance and scalable 10-Gb/s transmission systems. The 3R structures rely on monolithically integrated all-active semiconductor optical amplifier-based Mach-Zehnder interferometers (SOA-MZIs) for signal reshaping and optical narrowband filtering using a Fabry-Peacuterot filter (FPF) for all-optical clock recovery. The experimental results indicate very stable operation and superior cascadability of the proposed optical 3R structure, allowing error-free and low-penalty 10-Gb/s [pseudorandom bit sequence (PRBS) 223-1 ] return-to-zero (RZ) transmission through a record distance of 1 250 000 km using 10 000 optical 3R stages. Clock-enhancement techniques using a SOA-MZI are then proposed to accommodate the clock performance degradations that arise from dispersion uncompensated transmission. Leveraging such clock-enhancement techniques, we experimentally demonstrate error-free 125 000-km RZ dispersion uncompensated transmission at 10 Gb/s (PRBS 223-1) using 1000 stages of optical 3R regenerators spaced by 125-km large-effective-area fiber spans. To evaluate the proposed optical 3R structures in a relatively realistic environment and to investigate the tradeoff between the cascadability and the spacing of the optical 3R, a fiber recirculation loop is set up with 264- and 462-km deployed fiber. The field-trial experiment achieves error-free 10-Gb/s RZ transmission using PRBS 223-1 through 264 000-km deployed fiber across 1000 stages of optical 3R regenerators spaced by 264-km spans  相似文献   
60.
We evaluated the limit of scaling bottom electrode contact (BEC) heater size and high resistivity heater to reduce writing current. It was found that the resistivity of heater should be increased for reducing writing current below the heater size of about 50 nm without any undesirable increase of resistance of the crystalline state (SET state, Rset). It was shown in the numerical simulations that the dissipated heat loss through BEC during melting GST was decreased in the increase of resistivity of heater. In addition, we analyzed the resistance components contributing to the total set resistance. It was observed that the undesired sharp increase of Rset as the BEC size decreases below 50 nm was attributed to the resistance component of GST–BEC interface. In the case of high resistivity heater, the contributions of both incomplete crystallization and heater itself were enhanced.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号