首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2584篇
  免费   191篇
  国内免费   14篇
电工技术   49篇
综合类   17篇
化学工业   666篇
金属工艺   64篇
机械仪表   39篇
建筑科学   127篇
矿业工程   6篇
能源动力   132篇
轻工业   102篇
水利工程   14篇
石油天然气   7篇
无线电   252篇
一般工业技术   574篇
冶金工业   121篇
原子能技术   6篇
自动化技术   613篇
  2024年   6篇
  2023年   60篇
  2022年   123篇
  2021年   160篇
  2020年   107篇
  2019年   105篇
  2018年   109篇
  2017年   122篇
  2016年   131篇
  2015年   100篇
  2014年   159篇
  2013年   189篇
  2012年   209篇
  2011年   220篇
  2010年   135篇
  2009年   141篇
  2008年   121篇
  2007年   99篇
  2006年   81篇
  2005年   41篇
  2004年   46篇
  2003年   41篇
  2002年   32篇
  2001年   27篇
  2000年   22篇
  1999年   22篇
  1998年   30篇
  1997年   20篇
  1996年   8篇
  1995年   15篇
  1994年   6篇
  1993年   8篇
  1992年   10篇
  1991年   9篇
  1990年   15篇
  1989年   5篇
  1988年   4篇
  1987年   3篇
  1986年   3篇
  1985年   3篇
  1983年   4篇
  1981年   4篇
  1977年   3篇
  1976年   3篇
  1975年   4篇
  1974年   4篇
  1973年   3篇
  1972年   4篇
  1971年   2篇
  1970年   2篇
排序方式: 共有2789条查询结果,搜索用时 11 毫秒
101.
A novel flexible electrochemical microreactor has been developed. Flexibility is reached by a modular design, suitability for a broad process parameter range including high pressure operation, and accessibility of production scale. Selected reactor aspects have been validated by applying the reactor to three different electrosyntheses: synthesis of tailor-made mixtures of paraffins by Kolbe electrolysis, cation flow method, and synthesis of peroxodicarbonate. High conversion rates, yields, selectivities, and Faraday efficiency levels have been observed, showing precise process control.  相似文献   
102.
The production of printed circuit boards using the printing process produces considerable quantities of copper-containing etching solutions. The copper is recovered from the ammoniacal etching baths by cementation with aluminum waste at ≥ 99 % Cu yield rates. Instead of the usual landfilling, the aluminum-containing solution is processed into a coagulant which can be used in the treatment of mining tailings and wastewater. The aluminum oxychloride produced in this way was characterized in detail and its effectiveness as a flocculant for a finely dispersed system (kaolin suspension) was investigated and confirmed in a jar test.  相似文献   
103.
The serine/threonine kinase CK2 modulates the activity of more than 300 proteins and thus plays a crucial role in various physiological and pathophysiological processes including neurodegenerative disorders of the central nervous system and cancer. The enzymatic activity of CK2 is controlled by the equilibrium between the heterotetrameric holoenzyme CK2α2β2 and its monomeric subunits CK2α and CK2β. A series of analogues of W16 ((3aR,4S,10S,10aS)-4-{[(S)-4-benzyl-2-oxo-1,3-oxazolidin-3-yl]carbonyl}-10-(3,4,5-trimethoxyphenyl)-4,5,10,10a-tetrahydrofuro[3,4-b]carbazole-1,3(3aH)-dione ((+)- 3 a )) was prepared in an one-pot, three-component Levy reaction. The stereochemistry of the tetracyclic compounds was analyzed. Additionally, the chemically labile anhydride structure of the furocarbazoles 3 was replaced by a more stable imide ( 9 ) and N-methylimide ( 10 ) substructure. The enantiomer (−)- 3 a (Ki=4.9 μM) of the lead compound (+)- 3 a (Ki=31 μM) showed a more than sixfold increased inhibition of the CK2α/CK2β interaction (protein-protein interaction inhibition, PPII) in a microscale thermophoresis (MST) assay. However, (−)- 3 a did not show an increased enzyme inhibition of the CK2α2β2 holoenzyme, the CK2α subunit or the mutated CK2α′ C336S subunit in the capillary electrophoresis assay. In the pyrrolocarbazole series, the imide (−)- 9 a (Ki=3.6 μM) and the N-methylimide (+)- 10 a (Ki=2.8 μM) represent the most promising inhibitors of the CK2α/CK2β interaction. However, neither compound could inhibit enzymatic activity. Unexpectedly, the racemic tetracyclic pyrrolocarbazole (±)- 12 , with a carboxy moiety in the 4-position, displays the highest CK2α/CK2β interaction inhibition (Ki=1.8 μM) of this series of compounds.  相似文献   
104.
There is a lack of reliable biomarkers for disorders of the central nervous system (CNS), and diagnostics still heavily rely on symptoms that are both subjective and difficult to quantify. The cerebrospinal fluid (CSF) is a promising source of biomarkers due to its close connection to the CNS. Extracellular vesicles are actively secreted by cells, and proteomic analysis of CSF extracellular vesicles (EVs) and their molecular composition likely reflects changes in the CNS to a higher extent compared with total CSF, especially in the case of neuroinflammation, which could increase blood–brain barrier permeability and cause an influx of plasma proteins into the CSF. We used proximity extension assay for proteomic analysis due to its high sensitivity. We believe that this methodology could be useful for de novo biomarker discovery for several CNS diseases. We compared four commercially available kits for EV isolation: MagCapture and ExoIntact (based on magnetic beads), EVSecond L70 (size-exclusion chromatography), and exoEasy (membrane affinity). The isolated EVs were characterized by nanoparticle tracking analysis, ELISA (CD63, CD81 and albumin), and proximity extension assay (PEA) using two different panels, each consisting of 92 markers. The exoEasy samples did not pass the built-in quality controls and were excluded from downstream analysis. The number of detectable proteins in the ExoIntact samples was considerably higher (~150% for the cardiovascular III panel and ~320% for the cell regulation panel) compared with other groups. ExoIntact also showed the highest intersample correlation with an average Pearson’s correlation coefficient of 0.991 compared with 0.985 and 0.927 for MagCapture and EVSecond, respectively. The median coefficient of variation was 5%, 8%, and 22% for ExoIntact, MagCapture, and EVSecond, respectively. Comparing total CSF and ExoIntact samples revealed 70 differentially expressed proteins in the cardiovascular III panel and 17 in the cell regulation panel. To our knowledge, this is the first time that CSF EVs were analyzed by PEA. In conclusion, analysis of CSF EVs by PEA is feasible, and different isolation kits give distinct results, with ExoIntact showing the highest number of identified proteins with the lowest variability.  相似文献   
105.
Peri-implant infections from bacterial biofilms on artificial surfaces are a common threat to all medical implants. They are a handicap for the patient and can lead to implant failure or even life-threatening complications. New implant surfaces have to be developed to reduce biofilm formation and to improve the long-term prognosis of medical implants. The aim of this study was (1) to develop a new method to test the antibacterial efficacy of implant surfaces by direct surface contact and (2) to elucidate whether an innovative antimicrobial copolymer coating of 4-vinyl-N-hexylpyridinium bromide and dimethyl(2-methacryloyloxyethyl) phosphonate (VP:DMMEP 30:70) on titanium is able to reduce the attachment of bacteria prevalent in peri-implant infections. With a new in vitro model with semi-coated titanium discs, we were able to show a dramatic reduction in the adhesion of various pathogenic bacteria (Streptococcus sanguinis, Escherichia coli, Staphylococcus aureus, Staphylococcus epidermidis), completely independently of effects caused by soluble materials. In contrast, soft tissue cells (human gingival or dermis fibroblasts) were less affected by the same coating, despite a moderate reduction in initial adhesion of gingival fibroblasts. These data confirm the hypothesis that VP:DMMEP 30:70 is a promising antibacterial copolymer that may be of use in several clinical applications.  相似文献   
106.
Numerous short‐chain dehydrogenases/reductases (SDRs) have found biocatalytic applications in C=O and C=C (enone) reduction. For NADPH‐dependent C=N reduction, imine reductases (IREDs) have primarily been investigated for extension of the substrate range. Here, we show that SDRs are also suitable for a broad range of imine reductions. The SDR noroxomaritidine reductase (NR) is involved in Amaryllidaceae alkaloid biosynthesis, serving as an enone reductase. We have characterized NR by using a set of typical imine substrates and established that the enzyme is active with all four tested imine compounds (up to 99 % conversion, up to 92 % ee). Remarkably, NR reduced two keto compounds as well, thus highlighting this enzyme family's versatility. Using NR as a template, we have identified an as yet unexplored SDR from the Amaryllidacea Zephyranthes treatiae with imine‐reducing activity (≤95 % ee). Our results encourage the future characterization of SDR family members as a means of discovering new imine‐reducing enzymes.  相似文献   
107.
In this study, an in situ imaging system has been analysed to characterize the crystal size, the shape and the number of particles during a continuous crystallization process in a Continuous Oscillatory Baffled Crystallizer (COBC). Two image analysis approaches were examined for particle characterization in the suspension containing both small nuclei and larger grown crystals (nonspherical and irregular in shape). The pattern matching approach, in which the particles are approximated to be spherical, did result in an overestimation of the size. Alternatively, a segmentation‐based algorithm resulted in reliable crystal size and shape characteristics. The laser diffraction analysis in comparison to the image analysis overestimated the particle sizes due to the agglomeration of particles upon filtration and drying. The trend in the particle counts during the start of crystallization process, including nucleation, determined by the image analysis probe was comparable with the one measured by FBRM, highlighting the potential of in situ imaging for process monitoring. © 2018 American Institute of Chemical Engineers AIChE J, 64: 2450–2461, 2018  相似文献   
108.
ABSTRACT

Future adaptive applications require lightweight and stiff materials with high active strain but low energy consumption. A suitable combination of these properties is offered by carbon nanotube-based actuators. Papers made of carbon nanotubes (CNTs) are charged within an electrolyte, which results in an electrical field forming a double-layer of ions at their surfaces and a deflection of the papers can be detected. Until now, there is no generally accepted theory for the actuation mechanism. This study focuses on the actuation mechanism of CNT papers, which represent architectures of randomly oriented CNTs. The samples are tested electrochemically in an in-plane set-up to detect the free strain. The elastic modulus of the CNT papers is analyzed in a tensile test facility. The influence of various ion sizes of water-based electrolytes is investigated.

During the tests, four parameters that have a significant influence on the mechanical performance of CNT papers were identified: the test conditions, the electrical charging, the microstructure and the ion size. All of these influencing factors point to the mechanically weak inter-tube linking at which the actuation seems to take place. Quadratic voltage-strain correlation suggests a combination of electrostatic and volumetric effects as the possible reason for CNT paper actuation.

Abbreviations: CNT: carbon nanotubes; CV: cyclic voltammetry; CVD: chemical vapor deposition; HiPCO: high pressure carbon monoxide; IL: ionic liquid; MWCNT: multi-walled carbon nanotube; MW: multi-walled; NHE: normal hydrogen electrode; PDMS: polydimethylsiloxane; PMMA: polymethylmethacrylate; PPy: polypyrrole; PVDF: polyvinylidenefluoride; SCE: saturated calomel electrode; SWCNT: single-walled carbon nanotube; SW: single-walled; 1M: one molar concentration  相似文献   
109.
Slags from the nonferrous metals industry have great potential to be used as feedstocks for the production of alkali‐activated materials. Until now, however, only very limited information has been available about the structural characteristics of these materials. In the work presented herein, synthetic slags in the CaO–FeOx–SiO2 system, representing typical compositions of Fe‐rich slags, and inorganic polymers (IPs) produced from the synthetic slags by activation with alkali silicate solutions have been studied by means of X‐ray absorption near‐edge structure (XANES) spectroscopy at the Fe K‐edge. The iron in the slags was largely Fe2+, with an average coordination number of approximately 5 for the iron in the amorphous fraction. The increase in average oxidation number after alkali‐activation was conceptualized as the consequence of slag dissolution and IP precipitation, and employed to calculate the degrees of reaction of the slags. The degree of reaction of the slags increased with increasing amorphous fraction. The iron in the IPs had an average coordination number of approximately 5; thus, IPs produced from the Fe‐rich slags studied here are not Fe‐analogs of aluminosilicate geopolymers, but differ significantly in terms of structure from the latter.  相似文献   
110.
The stability of the electrocaloric effect under electric field cycling is an important consideration in the development of solid-state cooling devices. Here we report measurements carried out on Ba(Zr0.2Ti0.8)O3 ceramics which reveal that the adiabatic temperature change, polarization-electric field hysteresis loops and dielectric permittivity/loss show stable behavior up to 105 cycles. We further demonstrate that the loss in electrocaloric response observed after 105 cycles is associated with the migration of oxygen vacancies. As a result, the electrical properties of the material are changed leading to an increase in leakage current and Joule heating. Reversing the polarity of the electric field after every 105 cycles changes the migration direction of oxygen vacancies, thereby preventing charge accumulation at grain boundaries and electrodes. By doing so, the electrocaloric stability is improved and the adiabatic temperature remains constant even after 106 cycles, much higher than achieved in commercially available barium titanate ceramics.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号