首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4084篇
  免费   322篇
  国内免费   37篇
电工技术   76篇
综合类   13篇
化学工业   1208篇
金属工艺   127篇
机械仪表   200篇
建筑科学   165篇
矿业工程   16篇
能源动力   258篇
轻工业   405篇
水利工程   71篇
石油天然气   44篇
无线电   370篇
一般工业技术   639篇
冶金工业   110篇
原子能技术   32篇
自动化技术   709篇
  2024年   13篇
  2023年   79篇
  2022年   127篇
  2021年   289篇
  2020年   241篇
  2019年   312篇
  2018年   367篇
  2017年   329篇
  2016年   317篇
  2015年   187篇
  2014年   327篇
  2013年   457篇
  2012年   292篇
  2011年   303篇
  2010年   222篇
  2009年   162篇
  2008年   94篇
  2007年   51篇
  2006年   52篇
  2005年   35篇
  2004年   31篇
  2003年   17篇
  2002年   14篇
  2001年   5篇
  2000年   13篇
  1999年   3篇
  1998年   12篇
  1997年   3篇
  1996年   10篇
  1995年   11篇
  1994年   3篇
  1993年   7篇
  1992年   5篇
  1991年   4篇
  1990年   4篇
  1989年   7篇
  1988年   1篇
  1987年   4篇
  1986年   2篇
  1985年   3篇
  1984年   3篇
  1983年   6篇
  1982年   2篇
  1981年   2篇
  1980年   3篇
  1979年   3篇
  1978年   2篇
  1976年   3篇
  1974年   3篇
  1973年   1篇
排序方式: 共有4443条查询结果,搜索用时 9 毫秒
121.
122.
A new kind of polymer composite, produced from the typical polybenzoxazine and 0–30 wt-% native and silane-treated aluminium nitride (T-AlN), was investigated. The mechanical tests revealed a significant increase in the microhardness and flexural properties upon adding the T-AlN particles compared to that obtained from the untreated ones. By adding 0–30 wt-% T-AlN, the tensile moduli were accurately reproduced by the Halpin-Tsai and Nielsen models. At 30 wt-% T-AlN, dynamic mechanical analysis showed a significant increase in the storage moduli and the glass transition temperature (Tg), reaching 3.2?GPa and 217°C, respectively. The thermal stability of these materials was significantly improved upon the addition of the T-AlN fillers. These improvements are attributed to the high thermal and mechanical properties of the fillers and their good dispersion and adhesion in and to the matrix as revealed by a morphological analysis.  相似文献   
123.
International Journal of Mechanics and Materials in Design - This article aims to utilize IsoGeometric analysis (IGA) and Level set method for topology optimization of elastoplastic plane stress...  相似文献   
124.
In this article, polymerization of 1-hexene with FeCl3-doped Mg(OET)2/TiCl4/electron donor (ED) catalytic system is presented. For this purpose, first a number of TiCl4 catalysts supported on Mg(OEt)2 and Fe-doped Mg(OEt)2 supports were prepared with ethylbenzoate or dibutylphthalate as the internal EDs. After successive catalysts synthesis, they were employed in 1-hexene polymerization using cyclohexyl methyl dimethoxysilane as external ED as well as without it. The catalysts activity and molecular weight distribution (MWD) of poly 1-hexenes (PHs) were influenced strongly by both FeCl3 doping and donor presence so that a remarkable increase in the catalyst activity was seen in doped catalysts. Deconvolution of MWD curves revealed that increase in the type of active centers by introducing FeCl3 into the support should be responsible for the broadening of MWD of PHs. 13CNMR analysis indicated that while isotacticity does not change considerably by Fe doping, EDs increase its amount as high as 8–21%. Second, the stereoselective behavior of active Ti species in doped and undoped catalysts was fully explored by molecular modeling using density functional theory (DFT) method. Finally, with the aid of rheological measurements, the processability of polymers were evaluated and then the gel permeation chromatography (GPC) results were approved through the values obtained from model fitting as well as changes in moduli crossover modulus.  相似文献   
125.
In the modeling of brain mechanics subjected to primary blast waves, there is currently no consensus on how many biological components to be used in the brain–meninges–skull complex, and what type of constitutive models to be adopted. The objective of this study is to determine the role of layered meninges in damping the dynamic response of the brain under primary blast loadings. A composite structures composed of eight solid relevant layers (including the pia, cerebrospinal fluid (CSF), dura maters) with different mechanical properties are constructed to mimic the heterogeneous human head. A hyper-viscoelastic material model is developed to better represent the mechanical response of the brain tissue over a large strain/high frequency range applicable for blast scenarios. The effect of meninges on the brain response is examined. Results show that heterogeneous composite structures of the head have a major influence on the intracranial pressure, maximum shear stress, and maximum principal strain in the brain, which is associated with traumatic brain injuries. The meninges serving as protective layers are revealed by mitigating the dynamic response of the brain. In addition, appreciable changes of the pressure and maximum shear stress are observed on the material interfaces between layers of tissues. This may be attributed to the alternation of shock wave speed caused by the impedance mismatch.  相似文献   
126.
The aim of this study was to analyse input–output energy and economical assessment of almond production in three age groups of orchards (group I 6–10, group II 11–15 and group III 16–20 years old) in Chahrmahal-Va-Bakhtiari province, Iran. Data for almond production were collected by administering questionnaire in face-to-face interviews from the orchards selected based on random sampling method during a 3-year period. The results showed that 57,027.13, 60,341.14 and 61,640.43 MJ ha?1 energy was consumed by group I, group II and group III, respectively. The most energy input was consumed by electricity, followed by chemical fertilizer. Energy indices were calculated, and the results revealed that energy efficiency was 0.62, 1.12 and 0.81 in the triple groups of orchards, respectively. Economical assessment showed that total production cost of almond in group I, II and III was $4547.54, $5799.26 and $5687.05 ha?1, respectively. In all orchard groups, the shares of variable and fixed production costs found to be same nearly. Net return for almond production was $14,516.22, $30,735.19 and $21,395.57ha?1, respectively. According to the research results, it was concluded that although almond production in the study region was not an efficient process in terms of energy consumption, it was a profitable agricultural operation.  相似文献   
127.
Pure CuO–CeO2 nanocomposites were synthesized by simple thermal decomposition method in presence of various Cu salts as a copper source and fructose as a green capping agent. In this study, the effect of various parameters such as the type of copper sources, temperature and time of reaction on the morphology and the particles size were studied. The products were characterized via X-ray diffraction (XRD) pattern, scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX), transmission electron microscopy (TEM), N2 adsorption (BET), vibrating sample magnetometer (VSM), and infrared spectrum (FT-IR). The optical property of the nanocomposite was examined via UV–vis (DRS) spectroscopy and the band gap was calculated to 3 eV. Also, the hydrogen storage capacity of CuO–CeO2 nanocomposites and CeO2 nanoparticles were investigated via chronopotentiometry method for the first time. The discharge capacity of CeO2 nanoparticles and CuO–CeO2 nanocomposites in 1 mA current and 20 cycles obtained 2150 and 2450 mAh/g, respectively.  相似文献   
128.
This study evaluated the performance of rooftop catchment systems in securing non-potable water supply in Birjand, located in an arid area in southeastern Iran. The rooftop catchment systems at seven study sites of different residential buildings were simulated for dry, normal, and wet water years, using 31-year rainfall records. The trial and error approach and mass diagram method were employed to optimize the volume of reservoirs in five different operation scenarios. Results showed that, during the dry water year from 2000 to 2001, for reservoirs with volumes of 200–20000 L, the proportion of days that could be secured for non-portable water supply was on average computed to be 16.4%–32.6% across all study sites. During the normal water year from 2009 to 2010 and the wet water year from 1995 to 1996, for reservoirs with volumes of 200–20000 L, the proportions were 20.8%–69.6% and 26.8%–80.3%, respectively. Therefore, a rooftop catchment system showed a high potential to meet a significant portion of non-potable water demand in the Birjand climatic region. Reservoir volume optimization using the mass diagram method produced results consistent with those obtained with the trial and error approach, except at sites #1, #2, and #5. At these sites, the trial and error approach performed better than the mass diagram method due to relatively high water consumption. It is concluded that the rooftop catchment system is applicable under the same climatic conditions as the study area, and it can be used as a drought mitigation strategy as well.  相似文献   
129.
Due to the vast production of crude oil and consequent pressure drops through the reservoirs, secondary and tertiary oil recovery processes are highly necessary to recover the trapped oil. Among the different tertiary oil recovery processes, foam injection is one of the most newly proposed methods. In this regard, in the current investigation, foam solution is prepared using formation brine, C19TAB surfactant and air concomitant with nano-silica (SiO2) as foam stabilizer and mobility controller. The measurements revealed that using the surfactant-nano SiO2 foam solution not only leads to formation of stable foam, but also can reduce the interfacial tension mostly considered as an effective parameter for higher oil recovery. Finally, the results demonstrate that there is a good chance of reducing the mobility ratio from 1.12 for formation brine and reservoir oil to 0.845 for foam solution prepared by nanoparticles.  相似文献   
130.
In this study, thermal and small-scale effects on the flapwise bending vibrations of a rotating nanoplate, which can be the basis of nano-turbine design, have been analyzed. The nano-turbine is made of an orthotropic nanoplate with a setting angle that is modeled based on the classical plate theory (CPT) with cantilever boundary conditions. The axial forces are also included in the model as the true spatial variation due to the rotation and temperature change. The governing equations and boundary conditions are derived according to Hamilton's principle and the governing equations are solved with the aid of the generalized differential quadrature method. The effects of small-scale parameter, nondimensional angular velocity, temperature change, and setting angles in the first four nondimensional frequencies are discussed. Due to the consideration of the rotating effects, results of this study are applicable in nano-machines, such as nano-motors, nano-rotor, and other rotating nano-structures. Also, by considering the effect of thermal loading on rotation of a nanoplate, the results are useful in the design of nano-turbines.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号