4G wireless networks are based on All-IP architecture integrating cellular networks, Wireless local area networks, Worldwide Interoperability for Microwave Access, Wireless ad hoc networks, and Wireless Personal Area Networks etc. This makes seamless handover an important issue for users roaming among these networks. Anticipation of future events based on layer 2 (L2) trigger information is the basic principle of fast handover. It incurs higher signaling costs compared with the other protocols like Mobile IPv6 and Hierarchical Mobile IPv6. L2 trigger is based on fluctuating wireless channel states. Therefore, the handover anticipation using L2 trigger may sometimes be incorrect. Unnecessary buffer space is used for providing a smooth handover in the case of incorrect anticipation. Therefore, it is very important to analyze overhead costs and compare the performance of IP based handover protocols. This paper investigates the impact of L2 triggering time on the signaling cost, packet delivery cost, total overhead cost, and buffer space. Results show that Session to mobility ratio, L2 trigger time and number of subnets are determining parameters for optimizing handover performance. 相似文献
In mobile ad hoc networks, congestion occurs due to limited sources of the network, which leads to packet losses, bandwidth degradation and wastes time and energy on congestion recovery. Various techniques have been developed in attempt to minimize congestion in uniformly distributed networks. In this paper, a load balanced congestion adaptive routing algorithm has been proposed for randomly distributed networks. In the proposed algorithm two metrics: traffic load density and life time associated with a routing path, have been used to determine the congestion status and weakest node of the route. The route with low traffic load density and maximum life time is selected for packet transmission. 相似文献
The effect of interface-roughness-related disorder on the electronic and optoelectronic properties of a quantum wire structure are studied. It is seen that the disorder causes strong localization in the quasi-one-dimensional system. While the electronic states are seriously perturbed, the density of states is not affected drastically. Optoelectronic properties as reflected in the interband transition related phenomenon are not found to suffer significant deterioration as a result of the disorder. However, the results suggest that intraband relaxation processes may be seriously affected because of electron (hole) states being localized in different regions of the wire 相似文献
A realistic model of a front-illuminated n+-p-p+ silicon solar cell is developed by solving the current continuity equations for minority carriers in the quasi-neutral regions in steady state, assuming the light in the cell is trapped as a result of multiple reflections at the front and the back of the cell. This model is used to study the effects of the front emitter thickness and doping level and the light trapping on the J-V characteristic and thereby on the open-circuit voltage, short-circuit current density, curve factor, and the efficiency of the cell. A textured cell with an emitter thickness in the range of 0.3-1.0 μm with its doping ≈5×1018 cm-3 and the recombination velocities of minority carriers as large as 200 cm/s at the n+ front surface and 10 cm/s at the back of the p base can exhibit an efficiency in excess of 26% (under AM 1.5 sunlight of 100 mW/cm2 intensity) at 25°C if the light reflection losses at the front surface can be made small 相似文献
In this paper, a detailed modelling and analysis of a switched inductor (SI)-based improved single-ended primary inductor converter (SEPIC) has been presented. To increase the gain of conventional SEPIC converter, input and output side inductors are replaced with SI structures. Design and stability analysis for continuous conduction mode operation of the proposed SI-SEPIC converter has also been presented in this paper. State space averaging technique is used to model the converter and carry out the stability analysis. Performance and stability analysis of closed loop configuration is predicted by observing the open loop behaviour using Nyquist diagram and Nichols chart. System was found to stable and critically damped. 相似文献
Steady-state and transient forward current-voltage I-V characteristics have been measured in 5.5 kV p+-n-n+ 4H-SiC rectifier diodes up to a current density j≈5.5×10 4 A/cm2. The steady-state data are compared with calculations in the framework of a model, in which the emitter injection coefficient decreases with increasing current density. To compare correctly the experimental and theoretical results, the lifetime of minority carriers for high injection level, τph, has been estimated from transient characteristics. At low injection level, the hole diffusion length Lpl has been measured by photoresponse technique. For a low-doped n-base, the hole diffusion lengths are Lpl≈2 μm and Lph≈6-10 μm at low and high injection levels respectively. Hole lifetimes for low and high injection levels are τpl≈15 ns and τph≈140-400 ns. The calculated and experimental results agree well within the wide range of current densities 10 A/cm 23 A/cm2. At j>5 kA/cm2, the experimental values of residual voltage drop V is lower than the calculated ones. In the range of current densities 5×103 A/cm24 A/cm2, the minimal value of differential resistance Rd =dV/dj is 1.5×10-4 Ω cm2. At j>25 kA/cm2, Rd increases with increasing current density manifesting the contribution of other nonlinear mechanisms to the formation steady-state current-voltage characteristic. The possible role of Auger recombination is also discussed 相似文献
In present scenario of wireless sensor networks and communications, efficient sensed data transmission among nodes is being a great confrontation because of the impulsive and volatile nature of sensors in the network. For providing that and enhancing network lifetime, there are several approaches are developed, specifically using clustering techniques. Still, there are requirements for energy based efficient routing in WSN. With that note, this paper develops anEnergy Aware Efficient Data Aggregation (EAEDAR) and Data Re-Schedulingwith the incorporation of clustering techniques. Moreover, the model used energy based cluster formation and cluster head selection for increasing the network stability and data delivery rate. The model comprises four main phases, namely, Energy factor based cluster formation, Aggregator_SN (Sensor Node) Selection, Efficient Data Aggregation (EDA) and Data Re-Scheduling based on delay and processing time. Furthermore, the model is updated with respect to the status of the nodes and links, for providing consistent network with improved reliable data transmissions. The simulation results portrays the effectiveness of the proposed model over other compared works in terms of the performance factors such as, throughput, packet delivery ratio, network lifetime, transmission delay and packet drop.
Wireless Personal Communications - In this paper, we have proposed a lightweight blockchain based model to provide distributed authentication and anonymous authorization in IoD. We have proposed... 相似文献
Real-time sensing plays an important role in ensuring the reliability of industrial wireless sensor networks (IWSNs). Sensor nodes in IWSNs have inherent limitations that give rise to different anomalies in the network. These anomalies can lead to disastrous and harmful situations or even serious system failures. This article presents a formulation to the design of an anomaly detection scheme for detecting the anomalous node along with the type of anomaly. The proposed scheme is divided into two major parts. First, spatiotemporal correlation within a cluster is obtained for the normal and anomalous behavior of sensor nodes. Second, the multilevel hybrid classifier is used by combining the sequential minimal optimization support vector machine (SMO-SVM) as a binary classifier with optimally pruned extreme learning machine (OP-ELM) as a multiclass classifier for detection of an anomalous node and type of anomalies, respectively. Mahalanobis distance-based lightweight K-Medoid clustering is used to build a new set of training datasets that represents the original training dataset, by significantly reducing the training time of a multilevel hybrid classifier. Results are analyzed using standard WSN datasets. The proposed model shows high accuracy, i.e., 94.79% and detection rate, i.e., 94.6% with a reduced false positive rate as compared to existing hybrid methods. 相似文献
In this paper floating gate MOS (FGMOS) transistor based fully programmable Gaussian function generator (GFG) is presented. The circuit combines the exponential characteristics of MOS transistor in weak inversion, tunable property of FGMOS transistor, and its square law characteristic in strong inversion region to implement the GFG. FGMOS based squarer is the core sub circuit of GFG that helps to implement full Gaussian function for positive as well as negative half of the input voltage. FGMOS implementation of the circuit provides low voltage operation, low power consumption, reduces the circuit complexity and increases the tunability of the circuit. The performance of circuit is verified at 0.75 V in TSMC 0.18 μm CMOS, BSIM3 and level 49 technology by using Cadence Spectre simulator. To ensure robustness of the proposed GFG, simulation results for various process corner variations have also been included. 相似文献