首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1349篇
  免费   134篇
  国内免费   5篇
电工技术   26篇
综合类   5篇
化学工业   363篇
金属工艺   57篇
机械仪表   62篇
建筑科学   7篇
能源动力   55篇
轻工业   141篇
水利工程   7篇
石油天然气   2篇
无线电   232篇
一般工业技术   307篇
冶金工业   30篇
原子能技术   53篇
自动化技术   141篇
  2023年   3篇
  2022年   15篇
  2021年   30篇
  2020年   16篇
  2019年   34篇
  2018年   46篇
  2017年   38篇
  2016年   62篇
  2015年   56篇
  2014年   73篇
  2013年   86篇
  2012年   83篇
  2011年   127篇
  2010年   77篇
  2009年   97篇
  2008年   92篇
  2007年   78篇
  2006年   56篇
  2005年   38篇
  2004年   42篇
  2003年   55篇
  2002年   38篇
  2001年   39篇
  2000年   29篇
  1999年   33篇
  1998年   22篇
  1997年   10篇
  1996年   18篇
  1995年   11篇
  1994年   12篇
  1993年   13篇
  1992年   3篇
  1991年   7篇
  1990年   7篇
  1989年   3篇
  1988年   3篇
  1987年   3篇
  1985年   6篇
  1984年   3篇
  1983年   4篇
  1982年   1篇
  1981年   2篇
  1980年   3篇
  1978年   1篇
  1977年   2篇
  1976年   3篇
  1975年   1篇
  1974年   3篇
  1973年   1篇
  1967年   1篇
排序方式: 共有1488条查询结果,搜索用时 15 毫秒
11.
To improve the electrical conductivity of polyacrylonitrile (PAN) film, metallic sulfides and PAN composite film were prepared by the chelating method. Dense PAN film and porous PAN film were prepared by dry process and wet process, respectively. These PAN films were treated to NH2OH solution to introduce the amidoxime group coordinated with metallic ion. Cu+2 and Cd+2 ions were adsorbed to amidoximated PAN films, the sulfur ion was treated with metal-adsorbed PAN films, and thus CuS—and CdS–PAN composite films were prepared. The adsorptive capacity of amidoximated PAN film for the Cu+2 ion was independent of the morphology of the PAN film, but the adsorptive capacity of the Cd+2 ion on amidoximated PAN film was dependent on porosity of the polymer. Adsorptive capacity of amidoximated porous PAN film for Cd+2 was improved about four times than that of amidoximated dense PAN film. The electrical conductivities of CuS–dense and porous PAN composite film were both 10?1 S/cm in optimum condition, but because of the difference in adsorptive capacity, the electrical conductivities of CdS–dense and CdS–porous PAN composite films were 10?9 S/cm and 10?4 S/cm, respectively. Additionally, because CdS was known as a photoconductive material, the photoconductive properties of CdS–porous PAN composite film were investigated.  相似文献   
12.
The row‐nucleated lamellar crystalline structure of high‐density polyethylene (HDPE) films was prepared by applying elongation stress to HDPE melt during T‐die cast film extrusion and subsequently annealing the extruded films. This unusual crystalline structure was analyzed in terms of lamellar crystalline orientation, long‐period lamellar spacing, crystallite size, and degree of crystallinity. The contribution of melt‐extension represented by draw‐down‐ratio (DDR) to the overall orientation was found to be most noticeable than other processing variables. Meanwhile, the long‐period lamellar spacing, the crystallite size, and the degree of crystallinity were influenced predominantly by the annealing temperature. Finally, the processing (melt extension and annealing temperature) – structure (lamellar crystalline structure) – property (hard elasticity) relationship of HDPE films was investigated. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 3326–3333, 2007  相似文献   
13.
Nanoscale TiO2 particle filled poly(vinylidenefluoride-co-hexafluoropropylene) film is characterized by investigating some properties such as surface morphology, thermal and crystalline properties, swelling behavior after absorbing electrolyte solution, chemical and electrochemical stabilities, ionic conductivity, and compatibility with lithium electrode. Decent self-supporting polymer electrolyte film can be obtained at the range of <50 wt% TiO2. Different optimal TiO2 contents showing maximum liquid uptake may exist by adopting other electrolyte solution. Room temperature ionic conductivity of the polymer electrolyte placed surely on the region of >10−3 S/cm, and thus the film is very applicable to rechargeable lithium batteries. An emphasis is also be paid on that much lower interfacial resistance between the polymer electrolyte and lithium metal electrode can be obtained by the solid-solvent role of nanoscale TiO2 filler.  相似文献   
14.
Three new soluble polyconjugated polymers, all of which emitted blue light in photoluminescence and electroluminescence, were synthesized, and their luminescence properties were studied. The polymers were poly{1,1′‐biphenyl‐4,4′‐diyl‐[1‐(4‐t‐butylphenyl)]vinylene}, poly((9,9‐dioctylfluorene‐2,7‐diyl)‐alt‐{1,4‐phenylene‐[1‐(4‐t‐butylphenyl)vinylene‐1,4‐phenylene]}) [P(DOF‐PVP)], and poly([N‐(2‐ethyl) hexylcarbazole‐3,6‐diyl]‐alt‐{1,4‐phenylene‐[1‐(4‐t‐butylphenyl)]vinylene‐1,4‐phenylene}). The last two polymers had alternating sequences of the two structural units. Among the three polymers, P(DOF‐PVP) performed best in the light‐emitting diode devices of indium–tin oxide/poly(ethylenedioxythiophene) doped with poly(styrene sulfonate) (30 nm)/polymer (150 nm)/Li:Al (100 nm). This might have been correlated with the balance in and magnitude of the mobility of the charge carriers, that is, positive holes and electrons, and also the electronic structure, that is, highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) levels, of the polymers. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 307–317, 2006  相似文献   
15.
An increase in the depolymerization of chitosan was found with an increased concentration of sodium perborate. Acetic anhydride was added to reacetylated chitosan in a molar ratio per gulcosamine unit, and the amide I band of IR spectra changed with the addition of acetic anhydride. Sixteen chitosans with various molecular weights (MWs) and degrees of deacetylation (DODs) were prepared. X‐ray diffraction patterns indicated their amorphous and partially crystalline states. Increases in the chitosan MW and DOD increased the tensile strength (TS). TS of the chitosan films ranged from 22 to 61 MPa. However, the elongation (E) of chitosan films did not show any difference with MW. TS of chitosan films decreased with the reacetylation process. However, E of chitosan films was not dependent on DOD. The water vapor permeabilities (WVPs) of the chitosan films without a plasticizer were between 0.155 and 0.214 ng m/m2 s Pa. As the chitosan MW increased, the chitosan film WVP increased, but the values were not significantly different. Moreover, the WVP values were not different from low DOD to high DOD. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 3476–3484, 2003  相似文献   
16.
A comparative analysis of epoxidized natural rubber samples by 1H and 13C n.m.r., titrimetric, elemental and d.s.c. techniques has been made. Whereas the titrimetric method is only applicable at low epoxy contents (< 15 mol%) both n.m.r. methods give reasonable precision over the compositional range of 20–75 mol%. Elemental analysis appears less reliable. D.s.c. analysis through measurement of Tg provides the highest precision of measurement but requires independent calibration by one or more of the primary methods. The epoxy content may also be related to the polymer density.  相似文献   
17.
Biodegradability of cellulose fabrics was evaluated by use of a soil burial test, an activated sewage sludge test, and an enzyme hydrolysis. Surface changes after biodegradation were observed by optical microscopy. From X‐ray diffraction analysis (XRD), changes in the crystallinities and the internal structures as a result of degradation were also investigated. It was shown that biodegradability decreased in the following order: rayon > cotton ? acetate. Rayon fibers, which have a low crystallinity and a low degree of orientation, showed the highest biodegradability in most cases. However, in spite of its low crystallinity, acetate fibers exhibited very low biodegradability, probably because of the presence of hydrophobic groups in its structure. On the other hand, linen showed an inconsistent behavior in that it had the highest biodegradability in the soil burial test, but a lower biodegradability than that of cotton in the activated sewage sludge test. XRD analysis revealed that there was a slight increase in the crystallinity of linen, cotton, and rayon fabrics at the initial stage, but a continuous decrease thereafter. From the correlation analysis, it was revealed that the biodegradability of cellulose fabrics was closely related to the moisture regain of the fibers, which reflects the hydrophilicity and internal structure of the fibers at the same time. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 94: 248–253, 2004  相似文献   
18.
Chemostat and total cell retention cultures with internal filter system ofSaecharomyc.es cerevisiae H1-7 were carried out to produce ethanol from wood hydrolysate. Maximum ethanol productivity obtained in a chemostat with the aeration rate of 1 vvm was 3.79 g/(L·h). This was 20% higher than that in a chemostat without aeration. However, the substrate was not completely consumed at the dilution rate with the maximum productivity. The realistic productivity, which has higher than 99% conversion rate of substrate, was. 2.95 g/(L·h). The maximum productivity in the total cell retention culture was 6.65 g/(L·h) at the dilution rate of 0.19 h1 and the residual glucose concentration was negligible.  相似文献   
19.
Copoly(ehtylene terephthalate/imide)s (PETI) were prepared by melt polycodensation of bis(2-hydroxyethyl)terephthalate (BHET) and imide containing comonomer, 4,4′-bis[(4-carbo-2-hydroxyethoxy)phthalimido]diphenylmethane (BHEI) with Sb2O3 as catalyst at 280°C under vacuum (~ 1 mm Hg). The change of Tm with an increase of the BHEI repeat unit in the PETI copolymer was analyzed by the Flory equation. On isothermal crystallization, a longer induction time and a lower activation energy than for the PET homopolymer were observed with an increasing amount of BHEI repeat unit. The Avrami exponent, n, increased from 1.5 to 2.3 as the content of BHEI or crystallization temperature was increased. The Avrami rate constant K decreased with the increase of the BHEL unit. On nonisothermal crystallization, the Ozawa equation and Lawton plot were used to investigate the effect of BHEI units on the crystallization kinetics of PETI copolymers. From the change of the cooling crystallization function and the result of the Lawton plot, it was found that the BHEI unit effectively decreases the rate of crystallization.  相似文献   
20.
A miniature LTCC system‐in‐package (SiP) module has been presented for millimeter‐wave applications. A typical heterodyne 61 GHz transmitter (Tx) has been designed and fabricated in a type of the SiP module as small as 36 × 12 × 0.9 mm3. Five active chips including a mixer, driver amplifier, power amplifier, and two frequency multipliers were mounted on the single LTCC package substrate, in which all passive circuits such as a stripline (SL) BPF, 2 × 2 array patch antenna, surface‐mount technology (SMT) pads, and intermediate frequency (IF) feeding lines have been monolithically embedded by using vertical and planar transitions. The embedded SL BPF shows the center frequency of 60.8 GHz, BW of 4.1%, and insertion loss of 3.74 dB. The gain and 3‐dB beam width of the fabricated 2 × 2 array patch antenna are 7 dBi and 36 degrees, respectively. The assembled LTCC 61 GHz Tx SiP module achieves an output power of 10.2 dBm and an up‐conversion gain of 7.3 dB. Because of the integrated BPF, an isolation level between a local oscillation (LO) and RF signal is below 26.4 dBc and the spurious level is suppressed by lower than 22.4 dBc. By using a 61 GHz receiver (Rx) consisting of off‐the‐shelf modules, wireless communication test was demonstrated by comparing measured IF spectrums at the Tx and Rx part.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号