首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   905篇
  免费   42篇
  国内免费   3篇
电工技术   20篇
综合类   1篇
化学工业   186篇
金属工艺   48篇
机械仪表   17篇
建筑科学   10篇
矿业工程   2篇
能源动力   57篇
轻工业   71篇
水利工程   8篇
石油天然气   2篇
无线电   106篇
一般工业技术   208篇
冶金工业   80篇
原子能技术   6篇
自动化技术   128篇
  2024年   4篇
  2023年   23篇
  2022年   22篇
  2021年   39篇
  2020年   32篇
  2019年   31篇
  2018年   33篇
  2017年   46篇
  2016年   48篇
  2015年   29篇
  2014年   35篇
  2013年   70篇
  2012年   54篇
  2011年   61篇
  2010年   42篇
  2009年   35篇
  2008年   54篇
  2007年   34篇
  2006年   32篇
  2005年   16篇
  2004年   16篇
  2003年   19篇
  2002年   11篇
  2001年   8篇
  2000年   9篇
  1999年   5篇
  1998年   17篇
  1997年   21篇
  1996年   7篇
  1995年   8篇
  1994年   6篇
  1993年   9篇
  1992年   6篇
  1991年   3篇
  1990年   3篇
  1989年   5篇
  1988年   2篇
  1987年   3篇
  1985年   11篇
  1984年   2篇
  1983年   2篇
  1981年   3篇
  1980年   4篇
  1979年   8篇
  1978年   2篇
  1977年   3篇
  1976年   7篇
  1975年   4篇
  1972年   1篇
  1929年   1篇
排序方式: 共有950条查询结果,搜索用时 0 毫秒
141.
The influence of various strain waveforms on the low‐cycle fatigue of IN 718 tested at 650°C has been investigated. The straining paths are accompanied by dwell‐induced creep component(s) or unequal strain distribution in different portions of cycles reducing strength of material. The investigation intends to clarify mainly mechanistic aspects of relaxation‐fatigue interaction. Features of time‐dependent effect induced by nonpeak dwell and the same accompanied by peak dwell, slow unloading from the peak to a lower strain, and different loading and unloading rates are compared in terms of stress amplitude responses, mean stress relaxation, hysteresis loops, life, and damage parameter DC‐F. Softening is common in all the cases, and degree of softening varies linearly with life. The energy‐based life prediction model has been found to work well for the data, and we have introduced energy fraction–based approach to observe simultaneous contribution from both creep and fatigue on life.  相似文献   
142.
The existing models to predict the thermal conductivity of nanofluids are based on single particle diameter, whereas, in actual solutions, nanoparticles mostly exist in a cluster form. Experiments are carried out to observe the effects of various surfactants on stability, nanocluster formation, and thermal conductivity of Al2O3–H2O nanofluid, which is found to be improved considerably with SDS surfactant. The prolonged sonication was not adequate to break the clusters of Al2O3 nanoparticles, into an average size of less than 163 nm, indicating the tendency of Al2O3 nanoparticles to remain in the form of clusters instead of individual nanoparticles of primary size of 20 nm. Response surface methodology has been employed to design and optimize the experimental strategy by taking volumetric concentration, temperature, and surfactant amount as the contributing factors. The developed model has been validated against the experimental data and the existing models with an accuracy level of ± 8% in the former case. Analysis reveals about the formation of nanoclusters and enhancement in thermal conductivity. The results confirmed that the model can predict thermal conductivity enhancement with an accuracy level of R square value of the order of 0.9766.  相似文献   
143.
144.
The reduced electrical screening in 2D materials provides an ideal platform for realization of exotic quasiparticles, that are robust and whose functionalities can be exploited for future electronic, optoelectronic, and valleytronic applications. Recent examples include an interlayer exciton, where an electron from one layer binds with a hole from another, and a Holstein polaron, formed by an electron dressed by a sea of phonons. Here, a new quasiparticle is reported, “polaronic trion” in a heterostructure of MoS2/SrTiO3 (STO). This emerges as the Fröhlich bound state of the trion in the atomically thin monolayer of MoS2 and the very unique low energy soft phonon mode (≤7 meV, which is temperature and field tunable) in the quantum paraelectric substrate STO, arising below its structural antiferrodistortive (AFD) phase transition temperature. This dressing of the trion with soft phonons manifests in an anomalous temperature dependence of photoluminescence emission leading to a huge enhancement of the trion binding energy (≈70 meV). The soft phonons in STO are sensitive to electric field, which enables field control of the interfacial trion–phonon coupling and resultant polaronic trion binding energy. Polaronic trions could provide a platform to realize quasiparticle‐based tunable optoelectronic applications driven by many body effects.  相似文献   
145.
A microstrip patch filtenna inspired by defected ground structure (DGS) is presented in this article. It uses modified split ring resonator and capacitance loaded strip as a radiating element. The presented structure is incorporated with a pair of double U‐shaped DGS (DU‐DGS) to obtain filtering characteristics. The width of DU‐DGS plays a vital role in selecting attenuation poles of the filter as well as for the filtenna circuit. The separation distance between the DU‐DGS also affects the resonant frequency of the structure. Both radiation and filtration can be performed through a single structure, otherwise known as filtenna. The physical size of the proposed filtenna in terms of guided wavelength is 2.465λg × 1.160λg × 0.116λg at 10.8 GHz, and is comparatively less to others reported, so is considered as a superior feature. The presented filtenna possesses impedance bandwidth of 700 and 1800 MHz at 10.8 and 16.6 GHz, which covers standards of X‐ and Ku‐band, respectively. So, this can be referred to as dual band filtenna. The radiation pattern shows omnidirectionality in both E and H planes at resonance.  相似文献   
146.
Connamacher  Harold  Pancha  Nikil  Liu  Rui  Ray  Soumya 《Machine Learning》2020,109(1):51-78
Machine Learning - Rankboost is a well-known algorithm that iteratively creates and aggregates a collection of “weak rankers” to build an effective ranking procedure. Initial work on...  相似文献   
147.
Converting quadrilateral meshes to smooth manifolds, guided subdivision offers a way to combine the good highlight line distribution of recent G‐spline constructions with the refinability of subdivision surfaces. This avoids the complex refinement of G‐spline constructions and the poor shape of standard subdivision. Guided subdivision can then be used both to generate the surface and hierarchically compute functions on the surface. Specifically, we present a C2 subdivision algorithm of polynomial degree bi‐6 and a curvature bounded algorithm of degree bi‐5. We prove that the common eigenstructure of this class of subdivision algorithms is determined by their guide and demonstrate that their eigenspectrum (speed of contraction) can be adjusted without harming the shape. For practical implementation, a finite number of subdivision steps can be completed by a high‐quality cap. Near irregular points this allows leveraging standard polynomial tools both for rendering of the surface and for approximately integrating functions on the surface.  相似文献   
148.
Multimedia Tools and Applications - Breast cancer is one of the widespread reasons of morbidity worldwide that begins in the cells of the tissues of morbidity worldwide in the woman community....  相似文献   
149.
Poly(viny alcohol)–poly(vinyl pyrrolidone) biodegradable polymer blend was modified with aluminosilicate. Sample films containing 5, 10, 15, and 20 wt % filler were prepared by conventional solvent casting technique using glass plates as casting surfaces. The newly developed biodegradable composites are bright red, with magnetic properties due to the presence of iron compounds. Physical, chemical, and biodegradable properties of the films were studied with the conclusion that the presence of aluminosilicate affects the properties of the matrix and enhances biodegradability of the polymer composites. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 4963–4970, 2006  相似文献   
150.
Piezoelectric polymers, capable of converting mechanical vibrations into electrical energy, are attractive for use in vibrational energy harvesting due to their flexibility, robustness, ease, and low cost of fabrication. In particular, piezoelectric polymers nanostructures have been found to exhibit higher crystallinity, higher piezoelectric coefficients, and “self‐poling,” as compared to films or bulk. The research in this area has been mainly dominated by polyvinylidene fluoride and its copolymers, which while promising have a limited temperature range of operation due to their low Curie and/or melting temperatures. Here, the authors report the fabrication and properties of vertically aligned and “self‐poled” piezoelectric Nylon‐11 nanowires with a melting temperature of ≈200 °C, grown by a facile and scalable capillary wetting technique. It is shown that a simple nanogenerator comprising as‐grown Nylon‐11 nanowires, embedded in an anodized aluminium oxide (AAO) template, can produce an open‐circuit voltage of 1 V and short‐circuit current of 100 nA, when subjected to small‐amplitude, low‐frequency vibrations. Importantly, the resulting nanogenerator is shown to exhibit excellent fatigue performance and high temperature stability. The work thus offers the possibility of exploiting a previously unexplored low‐cost piezoelectric polymer for nanowire‐based energy harvesting, particularly at temperatures well above room temperature.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号