首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   551篇
  免费   59篇
电工技术   4篇
综合类   1篇
化学工业   201篇
金属工艺   5篇
机械仪表   9篇
建筑科学   23篇
能源动力   5篇
轻工业   112篇
水利工程   3篇
石油天然气   1篇
无线电   26篇
一般工业技术   103篇
冶金工业   42篇
原子能技术   1篇
自动化技术   74篇
  2023年   10篇
  2022年   31篇
  2021年   33篇
  2020年   19篇
  2019年   15篇
  2018年   17篇
  2017年   15篇
  2016年   23篇
  2015年   42篇
  2014年   38篇
  2013年   41篇
  2012年   43篇
  2011年   54篇
  2010年   30篇
  2009年   32篇
  2008年   33篇
  2007年   19篇
  2006年   25篇
  2005年   16篇
  2004年   14篇
  2003年   15篇
  2002年   6篇
  2001年   4篇
  2000年   3篇
  1999年   8篇
  1998年   3篇
  1997年   3篇
  1996年   5篇
  1995年   2篇
  1994年   2篇
  1990年   1篇
  1982年   1篇
  1980年   2篇
  1978年   1篇
  1977年   1篇
  1974年   1篇
  1971年   1篇
  1970年   1篇
排序方式: 共有610条查询结果,搜索用时 15 毫秒
61.
Zero liquid discharge (ZLD) is a crucial requirement in industrial operations concerned with water scarcity and environmental protection. This study investigates the feasibility of using membrane distillation combined with crystallization (MDC) as a potential solution for ZLD. High-saline NaCl solutions were used to evaluate the performance of a seeded MDC system, which demonstrated excellent recovery rates for both water (over 95 %) and salt (over 95.5 %). The presence of seeding crystals in the MDC system was found to inhibit membrane wetting. The MDC system achieved an average thermal efficiency of 61.5 %, showcasing its potential for long-term processes. These results indicate that introducing seed crystals to the membrane's feed side enhances the MDC system's viability as a promising solution for ZLD. Additionally, the MDC system offers the prospect of high water and salt recovery, making it a sustainable approach to wastewater treatment and water reclamation.  相似文献   
62.
In recent years, dual-cure chemistry has been exploited to realize interpenetrating networks (IPNs) that provide enhanced thermo-mechanical properties. In this contribution, photoinduced curing of (meth)acrylates is used to build the desired 3D structure, whereas the thermally triggered polymerization reaction of 2H-chromene functionalized building blocks is utilized to create the IPN. This strategy combines the advantages of traditional UV-curable monomers with high-performance thermosets. After the successful synthesis of the bispropargyl ether derivative, i.e., 4,4′-(propane-2,2-diyl)bis((ethynyloxy)benzene), its thermally induced conversion to the corresponding 2H chromene functionalized prepolymer is studied by Fourier-transform infrared spectroscopy and gel permeation chromatography. The network formation as well as the printability of various formulations containing different amounts of the thermo-curable building block is investigated. The obtained IPNs provide enhanced thermo-mechanical properties making these resins suitable for the additive manufacturing of functional 3D parts for high-performance applications.  相似文献   
63.
64.
Bioactive, synthetic materials represent next‐generation composites for tissue regeneration. Design of contemporary materials attempts to recapitulate the complexities of native tissue; however, few successfully mimic the order in nature. Recently, graphene oxide (GO ) has emerged as a scaffold due to its potential for bioactive functionalization and long‐range order instilled by the self‐assembly of graphene sheets. Chemical reduction of GO results in a more compatible material with enhanced properties but compromises the ability to functionalize the graphenic backbone. However, using Johnson–Claisen rearrangement chemistry, functionalization is achieved that is not liable to reduction. From reduced Claisen graphene, we polymerized short homopeptides from α ‐amino acid N ‐carboxyanhydride monomers of glutamate and lysine to result in functionalized graphenes (pGlu‐rCG and pLys‐rCG ) that are cytocompatible, degradable, and bioactive. Exposure to NIH‐3T3 fibroblasts and RAW 264.7 macrophages revealed that the materials are cytocompatible and do not alter important sub‐cellular compartments. Powders were hot pressed to form mechanically stiff (E ′: 41 and 49 MPa ), strong (UCS : 480 and 140 MPa ), and tough (U T: 2898 and 584 J m?3 × 104) three‐dimensional constructs (pGlu‐rCG and pLys‐rCG, respectively). Overall, we report a robust chemistry and processing strategy for facile bioactive functionalization of compatible, reduced Claisen graphene for three‐dimensional biomedical applications. © 2017 Society of Chemical Industry  相似文献   
65.
For the training of academic skills, digital educational games with integrated adaptivity are promising. Adaptive games are considered superior to non-adaptive games, because they constantly assess children's performance, and accordingly adapt the difficulty of the tasks corresponding to the children's individual level. However, empirical evidence with regard to the effectivity of adaptive compared to non-adaptive games is limited. A study was conducted with 191 children from the third year of Kinder garten who were enrolled in one of three conditions, that is, playing an adaptive version of the reading game (RG), a non-adaptive version of the RG or training with pen-and-paper exercises. In all three conditions, children trained emergent reading (phonological awareness and letter knowledge) once a week for 30 min over a period of 5 weeks. Children's performance on cognitive (phonological awareness, letter knowledge, reading fluency) and non-cognitive (motivation, self-concept) factors was assessed. Results revealed a significant improvement in phonological awareness and letter knowledge in all conditions. However, no differences between the conditions were observed with respect to children's improvement on phonological awareness and letter knowledge or on their post-test scores for reading fluency. With regard to motivation and self-concept, again, no differences in these non-cognitive factors were observed across conditions.  相似文献   
66.
We devised a simple and effective method of electrochemical functionalization of horizontally aligned CNT films in diluted HCl and H2SO4 solutions upon their electrolysis under a constant current mode. We were able to cause notable generation of carbon–oxygen and carbon–chlorine functional groups on the CNT film anodes as proven by EDX, XPS, and Raman spectroscopy. As a consequence, we observed significant changes of the morphology of the material under electron microscopy, what translated into improved compatibility of CNTs with hydrophilic media. In turn, application of CNT films as cathodes was found as a powerful tool for a thorough cleaning of the nanotubes. Finally, we demonstrated that by the selection of appropriate conditions, CNT films can act as easy-to-make and flexible electrodes with a high stability and performance superior to graphite for generation of non-oxidizing gases such as hydrogen from solution. CNT film electrodes are two orders of magnitude lighter and require much lower overpotential for faradaic splitting of water.  相似文献   
67.
In this paper we address the extension of a recently proposed reduced integration eight‐node solid‐shell finite element to large deformations. The element requires only one integration point within the shell plane and at least two integration points over the thickness. The possibility to choose arbitrarily many Gauss points over the shell thickness enables a realistic and efficient modeling of the non‐linear material behavior. Only one enhanced degree‐of‐freedom is needed to avoid volumetric and Poisson thickness locking. One key point of the formulation is the Taylor expansion of the inverse Jacobian matrix with respect to the element center leading to a very accurate modeling of arbitrary element shapes. The transverse shear and curvature thickness locking are cured by means of the assumed natural strain concept. Further crucial points are the Taylor expansion of the compatible cartesian strain with respect to the center of the element as well as the Taylor expansion of the second Piola–Kirchhoff stress tensor with respect to the normal through the center of the element. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
68.
69.
Echinocandins are cyclic nonribosomal hexapeptides based mostly on nonproteinogenic amino acids and displaying strong antifungal activity. Despite previous studies on their biosynthesis by fungi, the origin of three amino acids, trans‐4‐ and trans‐3‐hydroxyproline, as well as trans‐3‐hydroxy‐4‐methylproline, is still unknown. Here we describe the identification, overexpression, and characterization of GloF, the first eukaryotic α‐ketoglutarate/FeII‐dependent proline hydroxylase from the pneumocandin biosynthesis cluster of the fungus Glarea lozoyensis ATCC 74030. In in vitro transformations with L ‐proline, GloF generates trans‐4‐ and trans‐3‐hydroxyproline simultaneously in a ratio of 8:1; the latter reaction was previously unknown for proline hydroxylase catalysis. trans‐4‐Methyl‐L ‐proline is converted into the corresponding trans‐3‐hydroxyproline. All three hydroxyprolines required for the biosynthesis of the echinocandins pneumocandins A0 and B0 in G. lozoyensis are thus provided by GloF. Sequence analyses revealed that GloF is not related to bacterial proline hydroxylases, and none of the putative proteins with high sequence similarity in the databases has been characterized so far.  相似文献   
70.
Prospective environmental life cycle assessment of nanosilver T-shirts   总被引:1,自引:0,他引:1  
A cradle-to-grave life cycle assessment (LCA) is performed to compare nanosilver T-shirts with conventional T-shirts with and without biocidal treatment. For nanosilver production and textile incorporation, we investigate two processes: flame spray pyrolysis (FSP) and plasma polymerization with silver co-sputtering (PlaSpu). Prospective environmental impacts due to increased nanosilver T-shirt commercialization are estimated with six scenarios. Results show significant differences in environmental burdens between nanoparticle production technologies: The "cradle-to-gate" climate footprint of the production of a nanosilver T-shirt is 2.70 kg of CO(2)-equiv (FSP) and 7.67-166 kg of CO(2)-equiv (PlaSpu, varying maturity stages). Production of conventional T-shirts with and without the biocide triclosan has emissions of 2.55 kg of CO(2)-equiv (contribution from triclosan insignificant). Consumer behavior considerably affects the environmental impacts during the use phase. Lower washing frequencies can compensate for the increased climate footprint of FSP nanosilver T-shirt production. The toxic releases from washing and disposal in the life cycle of T-shirts appear to be of minor relevance. By contrast, the production phase may be rather significant due to toxic silver emissions at the mining site if high silver quantities are required.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号