首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2744篇
  免费   103篇
  国内免费   4篇
电工技术   35篇
综合类   1篇
化学工业   273篇
金属工艺   17篇
机械仪表   41篇
建筑科学   70篇
矿业工程   3篇
能源动力   34篇
轻工业   129篇
水利工程   15篇
石油天然气   7篇
无线电   307篇
一般工业技术   393篇
冶金工业   1219篇
原子能技术   23篇
自动化技术   284篇
  2022年   15篇
  2021年   21篇
  2020年   26篇
  2019年   28篇
  2018年   36篇
  2017年   27篇
  2016年   28篇
  2015年   46篇
  2014年   38篇
  2013年   119篇
  2012年   49篇
  2011年   77篇
  2010年   56篇
  2009年   42篇
  2008年   72篇
  2007年   57篇
  2006年   56篇
  2005年   56篇
  2004年   58篇
  2003年   49篇
  2002年   50篇
  2001年   35篇
  2000年   47篇
  1999年   70篇
  1998年   381篇
  1997年   215篇
  1996年   130篇
  1995年   83篇
  1994年   92篇
  1993年   86篇
  1992年   38篇
  1991年   24篇
  1990年   39篇
  1989年   30篇
  1988年   23篇
  1987年   27篇
  1986年   32篇
  1985年   34篇
  1984年   23篇
  1983年   38篇
  1982年   23篇
  1981年   29篇
  1980年   31篇
  1978年   17篇
  1977年   48篇
  1976年   80篇
  1975年   17篇
  1974年   13篇
  1972年   13篇
  1970年   14篇
排序方式: 共有2851条查询结果,搜索用时 15 毫秒
41.
Point-matching is a widely applied image registration method and many algorithms have been developed. Registration of 2-D electrophoresis gels is an important problem in biological research that presents many of the technical difficulties that beset point-matching: large numbers of points with variable densities, large nonrigid transformations between point sets, paucity of structural information and large numbers of unmatchable points (outliers) in either set. In seeking the most suitable algorithm for gel registration we have evaluated a number of approaches for accuracy and robustness in the face of these difficulties. Using synthetic images we test combinations of three algorithm components: correspondence assignment, distance metrics and image transformation. We show that a version of the iterated closest point (ICP) algorithm using a non-Euclidean distance metric and a robust estimation of transform parameters provides best performance, equalling SoftAssign in the presence of moderate image distortion, and providing superior robustness against large distortions and high outlier proportions. From this evaluation we develop a gel registration algorithm based on robust ICP and a novel distance metric combining Euclidean, shape context and image-related features. We demonstrate the accuracy of gel matching using synthetic distortions of real gels and show that robust estimation of transform parameters using M-estimators can enforce inverse consistency, ensuring that matching results are independent of the order of the images.  相似文献   
42.
A novel approach to muscle fatigue assessment is proposed. A function is used to map multiple myoelectric parameters representing segments of myoelectric data to a fatigue estimate for that segment. An artificial neural network is used to tune the mapping function and time-domain features are used as inputs. Two fatigue tests were conducted on five participants in each of static, cyclic and random conditions. The function was tuned with one data set and tested on the other. Performance was evaluated based on a signal to noise metric which compared variability due to fatigue factors with variability due to nonfatiguing factors. Signal to noise ratios for the mapping function ranged from 7.89 under random conditions to 9.69 under static conditions compared to 3.34-6.74 for mean frequency and 2.12-2.63 for instantaneous mean frequency indicating that the mapping function tracks the myoelectric manifestations of fatigue better than either mean frequency or instantaneous mean frequency under all three contraction conditions.  相似文献   
43.
Biodegradable substrates and encapsulating materials play critical roles in the development of an emerging class of semiconductor technology, generally referred as “transient electronics”, whose key characteristic is an ability to dissolve completely, in a controlled manner, upon immersion in ground water or biofluids. The results presented here introduce the use of thin foils of Mo, Fe, W, or Zn as biodegradable substrates and silicate spin‐on‐glass (SOG) materials as insulating and encapsulating layers, with demonstrations of transient active (diode and transistor) and passive (capacitor and inductor) electronic components. Complete measurements of electrical characteristics demonstrate that the device performance can reach levels comparable to those possible with conventional, nontransient materials. Dissolution kinetics of the foils and cytotoxicity tests of the SOG yield information relevant to use in transient electronics for temporary biomedical implants, resorbable environmental monitors, and reduced waste consumer electronics.  相似文献   
44.
Electronics that are capable of destroying themselves, on demand and in a harmless way, might provide the ultimate form of data security. This paper presents materials and device architectures for triggered destruction of conventional microelectronic systems by means of microfluidic chemical etching of the constituent materials, including silicon, silicon dioxide, and metals (e.g., aluminum). Demonstrations in an array of home‐built metal‐oxide‐semiconductor field‐effect transistors that exploit ultrathin sheets of monocrystalline silicon and in radio‐frequency identification devices illustrate the utility of the approaches.  相似文献   
45.
A class of thin, lightweight, flexible, near‐field communication (NFC) devices with ultraminiaturized format is introduced, and systematic investigations of the mechanics, radio frequency characteristics, and materials aspects associated with their optimized construction are presented. These systems allow advantages in mechanical strength, placement versatility, and minimized interfacial stresses compared to other NFC technologies and wearable electronics. Detailed experimental studies and theoretical modeling of the mechanical and electromagnetic properties of these systems establish understanding of the key design considerations. These concepts can apply to many other types of wireless communication systems including biosensors and electronic implants.  相似文献   
46.
Thin, flexible, body‐worn technologies that allow precise, quantitative monitoring of physiological status are of broad current interest due to their potential to improve the cost and effectiveness of healthcare. Although the surface of the skin represents one of the most widely explored points of integration, recently developed millimeter scale wireless sensor platforms allow deployment on alternative surfaces of the body, such as the finger/toenails and the teeth. The work described here introduces a collection of ideas in materials science, device engineering and computational techniques that enables precise characterization of the thermal transport characteristics of the nail bed tissue from measurements on the surface of the nail. Systematic in vitro studies demonstrate the underlying measurement principles, the theoretical models for optimized sensor design and the associated experimental procedures for determining the thermal conductivity of the tissue. Measurements performed on human subjects highlight capabilities in tracking changes in perfusion of the nail bed tissues in response to various external stimuli.  相似文献   
47.
We report on the use of a genetic algorithm (GA) in the design optimization of electrically small wire antennas, taking into account of bandwidth, efficiency and antenna size. For the antenna configuration, we employ a multisegment wire structure. The Numerical Electromagnetics Code (NEC) is used to predict the performance of each wire structure. To efficiently map out this multiobjective problem, we implement a Pareto GA with the concept of divided range optimization. In our GA implementation, each wire shape is encoded into a binary chromosome. A two-point crossover scheme involving three chromosomes and a geometrical filter are implemented to achieve efficient optimization. An optimal set of designs, trading off bandwidth, efficiency, and antenna size, is generated. Several GA designs are built, measured and compared to the simulation. Physical interpretations of the GA-optimized structures are provided and the results are compared against the well-known fundamental limit for small antennas. Further improvements using other geometrical design freedoms are discussed.  相似文献   
48.
Bioresorbable electronic systems represent an emerging class of technology of interest due to their ability to dissolve, chemically degrade, disintegrate, and/or otherwise physically disappear harmlessly in biological environments, as the basis for temporary implants that avoid the need for secondary surgical extraction procedures. Polyanhydride‐based polymers can serve as hydrophobic encapsulation layers for such systems, as a subset of the broader field of transient electronics, where biodegradation eventually occurs by chain scission. Systematic experimental studies that involve immersion in phosphate‐buffered saline solution at various pH values and/or temperatures demonstrate that dissolution occurs through a surface erosion mechanism, with little swelling. The mechanical properties of this polymer are well suited for use in soft, flexible devices, where integration can occur through a mold‐based photopolymerization technique. Studies of the dependence of the polymer properties on monomer compositions and the rates of permeation on coating thicknesses reveal some of the underlying effects. Simple demonstrations illustrate the ability to sustain operation of underlying biodegradable electronic systems for durations between a few hours to a week during complete immersion in aqueous solutions that approximate physiological conditions. Systematic chemical, physical, and in vivo biological studies in animal models reveal no signs of toxicity or other adverse biological responses.  相似文献   
49.
One method of transmitting wavelet based zerotree encoded images over noisy channels is to add channel coding without altering the source coder. A second method is to reorder the embedded zerotree bitstream into packets containing a small set of wavelet coefficient trees. We consider a hybrid mixture of these two approaches and demonstrate situations in which the hybrid image coder can outperform either of the two building block methods, namely on channels that can suffer packet losses as well as statistically varying bit errors.  相似文献   
50.
Chen  S. Meggitt  B.T. Rogers  A.J. 《Electronics letters》1990,26(20):1663-1665
When a CCD array is used to detect the spatial fringes of optical interference, interesting features emerge in the output as the width of each fringe approaches the dimension of a CCD sensing cell. These features are theoretically studied and their application to the enhancement of the dynamic operating range of electrically scanned white-light interferometry is investigated. Preliminary experimental results are presented.<>  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号