首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1026篇
  免费   1篇
  国内免费   2篇
电工技术   1篇
化学工业   8篇
金属工艺   2篇
机械仪表   2篇
建筑科学   1篇
轻工业   5篇
水利工程   1篇
一般工业技术   2篇
冶金工业   1005篇
自动化技术   2篇
  2023年   2篇
  2013年   3篇
  2012年   2篇
  2011年   3篇
  2010年   3篇
  2009年   3篇
  2008年   1篇
  2007年   1篇
  2003年   1篇
  1999年   31篇
  1998年   310篇
  1997年   206篇
  1996年   117篇
  1995年   67篇
  1994年   46篇
  1993年   66篇
  1992年   6篇
  1991年   5篇
  1990年   11篇
  1989年   9篇
  1988年   8篇
  1987年   15篇
  1986年   8篇
  1985年   8篇
  1983年   1篇
  1982年   2篇
  1981年   7篇
  1980年   7篇
  1978年   3篇
  1977年   22篇
  1976年   52篇
  1974年   1篇
  1973年   1篇
  1955年   1篇
排序方式: 共有1029条查询结果,搜索用时 15 毫秒
31.
Sarcoplasmic reticulum (SR) membranes purified from young adult (4-6 months) and aged (26-28 months) Fischer 344 male rat skeletal muscle were compared with respect to the functional and structural properties of the Ca-ATPase and its associated lipids. While we find no age-related alterations in (1) expression levels of Ca-ATPase protein, and (2) calcium transport and ATPase activities, the Ca-ATPase isolated from aged muscle exhibits more rapid inactivation during mild (37 degrees C) heat treatment relative to that from young muscle. Saturation-transfer EPR measurements of maleimide spin-labeled Ca-ATPase and parallel measurements of fatty acyl chain dynamics demonstrate that, accompanying heat inactivation, the Ca-ATPase from aged skeletal muscle more readily undergoes self-association to form inactive oligomeric species without initial age-related differences in association state of the protein. Neither age nor heat inactivation results in differences in acyl chain dynamics of the bilayer including those lipids at the lipid-protein interface. Initial rates of tryptic digestion associated with the Ca-ATPase in SR isolated from aged muscle are 16(+/- 2)% higher relative to that from young muscle. indicating more solvent exposure of a portion of the cytoplasmic domain. During heat inactivation these structural differences are amplified as a result of immediate and rapid further unfolding of the Ca-ATPase isolated from aged muscle relative to the delayed unfolding of the Ca-ATPase isolated from young muscle. Thus age-related alterations in the solvent exposure of cytoplasmic peptides of the Ca-ATPase are likely to be critical to the loss of conformational and functional stability.  相似文献   
32.
33.
Tetrahydrobiopterin is an essential cofactor required for activity of nitric oxide synthases. Existing evidence suggests that, during activation of constitutive and inducible isoforms of nitric oxide synthase, tetrahydrobiopterin is needed for allosteric and redox activation of enzymatic activity. However, precise mechanisms underlying the role of tetrahydrobiopterin in regulation of nitric oxide formation is not fully understood. In cerebral and peripheral arteries, increased availability of tetrahydrobiopterin can augment production of nitric oxide. In contrast, in arteries depleted of tetrahydrobiopterin, production of nitric oxide is impaired. Proinflammatory cytokines enhance mRNA expression of the rate-limiting enzyme of tetrahydrobiopterin biosynthesis, GTP cyclohydrolase I and stimulate production of tetrahydrobiopterin. The ability of vascular tissues to synthesize tetrahydrobiopterin plays an important role in regulation of nitric oxide synthase under physiological conditions as well as during inflammation and sepsis. More recent studies concerning expression and function of recombinant nitric oxide synthases suggest that availability of tetrahydrobiopterin is important for production of nitric oxide in genetically engineered blood vessels. In this review, mechanisms regulating availability of intracellular tetrahydrobiopterin and its role in control of vascular tone under physiological and pathological conditions will be discussed.  相似文献   
34.
35.
Caffeine (Caf) ingestion increases plasma epinephrine (Epi) and exercise endurance; these results are frequently transferred to coffee (Cof) consumption. We examined the impact of ingestion of the same dose of Caf in Cof or in water. Nine healthy, fit, young adults performed five trials after ingesting (double blind) either a capsule (Caf or placebo) with water or Cof (decaffeinated Cof, decaffeinated with Caf added, or regular Cof). In all three Caf trials, the Caf dose was 4.45 mg/kg body wt and the volume of liquid was 7.15 ml/kg. After 1 h of rest, the subject ran at 85% of maximal O2 consumption until voluntary exhaustion (approximately 32 min in the placebo and decaffeinated Cof tests). In the three Caf trials, the plasma Caf and paraxanthine concentrations were very similar. After 1 h of rest, the plasma Epi was increased (P < 0.05) by Caf ingestion, but the increase was greater (P < 0.05) with Caf capsules than with Cof. During the exercise there were no differences in Epi among the three Caf trials, and the Epi values were all greater (P < 0.05) than in the other tests. Endurance was only increased (P < 0. 05) in the Caf capsule trial; there were no differences among the other four tests. One cannot extrapolate the effects of Caf to Cof; there must be a component(s) of Cof that moderates the actions of Caf.  相似文献   
36.
The human double-stranded RNA (dsRNA)-dependent protein kinase PKR inhibits protein synthesis by phosphorylating translation initiation factor 2alpha (eIF2alpha). Vaccinia virus E3L encodes a dsRNA binding protein that inhibits PKR in virus-infected cells, presumably by sequestering dsRNA activators. Expression of PKR in Saccharomyces cerevisiae inhibits protein synthesis by phosphorylation of eIF2alpha, dependent on its two dsRNA binding motifs (DRBMs). We found that expression of E3 in yeast overcomes the lethal effect of PKR in a manner requiring key residues (Lys-167 and Arg-168) needed for dsRNA binding by E3 in vitro. Unexpectedly, the N-terminal half of E3, and residue Trp-66 in particular, also is required for anti-PKR function. Because the E3 N-terminal region does not contribute to dsRNA binding in vitro, it appears that sequestering dsRNA is not the sole function of E3 needed for inhibition of PKR. This conclusion was supported by the fact that E3 activity was antagonized, not augmented, by overexpressing the catalytically defective PKR-K296R protein containing functional DRBMs. Coimmunoprecipitation experiments showed that a majority of PKR in yeast extracts was in a complex with E3, whose formation was completely dependent on the dsRNA binding activity of E3 and enhanced by the N-terminal half of E3. In yeast two-hybrid assays and in vitro protein binding experiments, segments of E3 and PKR containing their respective DRBMs interacted in a manner requiring E3 residues Lys-167 and Arg-168. We also detected interactions between PKR and the N-terminal half of E3 in the yeast two-hybrid and lambda repressor dimerization assays. In the latter case, the N-terminal half of E3 interacted with the kinase domain of PKR, dependent on E3 residue Trp-66. We propose that effective inhibition of PKR in yeast requires formation of an E3-PKR-dsRNA complex, in which the N-terminal half of E3 physically interacts with the protein kinase domain of PKR.  相似文献   
37.
Dietary sodium restriction has a variety of effects on metabolism, including activation of the renin-angiotensin system. Angiotensin II has complex metabolic and cardiovascular effects, and these may be relevant to the effects of both nonpharmacological and pharmacological interventions in noninsulin-dependent diabetes mellitus (NIDDM). We have assessed the effect of dietary sodium restriction on insulin sensitivity and endogenous glucose production in eight normotensive patients with diet-controlled NIDDM who underwent hyperinsulinemic clamp studies in a randomized, double-blind, placebo-controlled cross-over protocol after two 4-day periods on sodium replete (160 mmol/day) and sodium deplete (40 mmol/day) diets. Mean +/- SD 24-h urinary sodium was 197 +/- 76.0 mmol (replete) and 67 +/- 19.5 mmol (deplete), P = 0.03. Insulin sensitivity was 42.0 +/- 11.3 mumol/kg.min (replete) and 37.0 +/- 11.6 mumol/kg.min (deplete), P = 0.04 (a reduction of 12%). Blood pressure was 130 +/- 21/78 +/- 11 mmHg (replete) and 128 +/- 12/73 +/- 10 mmHg (deplete). Dietary sodium restriction may result in a decrease in peripheral insulin sensitivity in normotensive patients with NIDDM, possibly via an elevation in prevailing angiotensin II concentrations.  相似文献   
38.
39.
Most biological organisms rely upon a DNA polymerase holoenzyme for processive DNA replication. The bacteriophage T4 DNA polymerase holoenzyme is composed of the polymerase enzyme and a clamp protein (the 45 protein), which functions as a processivity factor by strengthening the interaction between DNA and the holoenzyme. The 45 protein must be loaded onto DNA by a clamp loader ATPase complex (the 44/62 complex). In this paper, the order of events leading to holoenzyme formation is investigated using a combination of rapid-quench and stopped-flow fluorescence spectroscopy kinetic methods. A rapid-quench strand displacement assay in which the order of holoenzyme component addition is varied provided data indicating that the rate-limiting step in holoenzyme assembly is associated with the clamp loading process. Pre-steady-state analysis of the clamp loader ATPase activity demonstrated that the four bound ATP molecules are hydrolyzed stepwise during the clamp loading process in groups of two. Clamp loading was examined with stopped-flow fluorescence spectroscopy from the perspective of the clamp itself, using a site-specific, fluorescently labeled 45 protein. A mechanism for T4 DNA polymerase holoenzyme assembly is proposed in which the 45 protein interacts with the 44/62 complex leading to the hydrolysis of 2 equiv of ATP, and upon contacting DNA, the remaining two ATP molecules bound to the 44/62 complex are hydrolyzed. Once all four ATP molecules are hydrolyzed, the 45 protein is poised on DNA for association with the polymerase to form the holoenzyme.  相似文献   
40.
The aim of this work was to define the chemical structure of compounds self-assembling in water solutions, which appear to interact with proteins as single ligands with their supramolecular nature preserved. For this purpose the ligation to proteins of bis azo dyes, represented by Congo red and its derivatives with designed structural alterations, were tested. The three parameters which characterize the reactivity of supramolecular material were determined in the same conditions for all studied dyes. These were: A) stability of the assembly products; B) binding to heat-denatured protein (human IgG); and C) binding to native protein (rabbit antibodies in the immune complex) measured by the enhancement of hemagglutination. The structural differences between the Congo red derivatives concerned the symmetry of the molecule and the structure of its non-polar component, which occupies the central part of the dye molecule and is thought to be crucial for self-assembly. Other dyes were also studied for the same purpose: Evans blue and Trypan blue, bis-ANS and ANS, as well as a group of compounds with a structural design unlike that of bis azo dyes. Compounds with rigid elongated symmetric molecules with a large non-polar middle fragment are expected to form a ribbon-like supramolecular organization in assembling. They appeared to have ligation properties related to their self-assembling tendency. The compounds with different structures, not corresponding to bis azo dyes, did not reveal ligation capability, at least in respect to native protein. The conditions of binding to denatured proteins seem less restrictive than the conditions of binding to native molecules. The molten hydrophobic protein interior becomes a new binding area allowing for complexation of even non-assembled molecules.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号