首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2457篇
  免费   95篇
  国内免费   5篇
电工技术   45篇
综合类   5篇
化学工业   545篇
金属工艺   43篇
机械仪表   79篇
建筑科学   56篇
矿业工程   1篇
能源动力   89篇
轻工业   118篇
水利工程   8篇
石油天然气   3篇
无线电   467篇
一般工业技术   449篇
冶金工业   263篇
原子能技术   8篇
自动化技术   378篇
  2023年   13篇
  2022年   41篇
  2021年   52篇
  2020年   29篇
  2019年   33篇
  2018年   53篇
  2017年   44篇
  2016年   52篇
  2015年   41篇
  2014年   91篇
  2013年   189篇
  2012年   142篇
  2011年   155篇
  2010年   118篇
  2009年   150篇
  2008年   154篇
  2007年   137篇
  2006年   98篇
  2005年   82篇
  2004年   76篇
  2003年   69篇
  2002年   65篇
  2001年   49篇
  2000年   43篇
  1999年   47篇
  1998年   107篇
  1997年   85篇
  1996年   43篇
  1995年   38篇
  1994年   34篇
  1993年   28篇
  1992年   33篇
  1991年   29篇
  1990年   12篇
  1989年   5篇
  1988年   11篇
  1987年   8篇
  1986年   6篇
  1985年   11篇
  1984年   14篇
  1983年   5篇
  1982年   8篇
  1981年   10篇
  1980年   6篇
  1979年   4篇
  1977年   7篇
  1976年   8篇
  1975年   5篇
  1973年   6篇
  1967年   3篇
排序方式: 共有2557条查询结果,搜索用时 15 毫秒
991.
The effects of Mn3O4 addition and reductive atmosphere (N2:H2 = 97:3) annealing on the microstructure and phase stability of yttria stabilized zirconia (YSZ) ceramics during sintering at 1500 °C for 3 h in air and subsequent annealing in a reductive atmosphere were investigated. Mn3O4 added 6 mol% YSZ (6YSZ) and 10 mol% YSZ (10YSZ) ceramics were prepared via the conventional solid-state reaction processes. The X-ray diffraction results showed that a single cubic phase of ZrO2 was obtained in 1 mol% Mn3O4 added 6YSZ ceramic at a sintering temperature of 1500 °C for 3 h. A trace amount of monoclinic ZrO2 phases were observed for 1 mol% Mn3O4 added 6YSZ ceramics after annealing at 1300 °C for 60 cycles in a reductive atmosphere by transmission electron microscopy. Furthermore, a single cubic ZrO2 phase existed stably as Mn3O4 added 10YSZ ceramics was annealed at 1300 °C for 60 cycles in reductive atmosphere.  相似文献   
992.
This study investigated the suitability of using nickel ferrite (NiFe2O4) oxygen carriers for a chemical looping process. NiFe2O4 powder was prepared by ball milling equimolar NiO and Fe2O3 in a high temperature solid-state reaction. Material characteristics of NiFe2O4 samples were investigated by X-ray diffraction (XRD), Brunauer–Emmett–Teller (BET) surface area measurements, and scanning electron microscopy (SEM). Redox cycling of NiFe2O4 oxygen carriers was performed by thermogravimetric (TGA) measurement under pure CH4 gas and O2/Air atmospheres, respectively. After five successive cycles, NiFe2O4 powder with a single phase of spinel structure demonstrated higher redox cycling behavior and better stability than standard NiO and Fe2O3. We also addressed the mechanism underlying the redox cycling by NiFe2O4 spinel powder. Our results demonstrate the feasibility of using the proposed preparation of NiFe2O4 as an oxygen carrier in a reversible chemical looping process (CLP).  相似文献   
993.
994.
Adolescent idiopathic scoliosis (AIS) is a common orthopedic disorder of unknown etiology and pathogenesis. Melatonin and melatonin pathway dysfunction has been widely suspected to play an important role in the pathogenesis. Many different types of animal models have been developed to induce experimental scoliosis mimicking the pathoanatomical features of idiopathic scoliosis in human. The scoliosis deformity was believed to be induced by pinealectomy and mediated through the resulting melatonin-deficiency. However, the lack of upright mechanical spinal loading and inherent rotational instability of the curvature render the similarity of these models to the human counterparts questionable. Different concerns have been raised challenging the scientific validity and limitations of each model. The objectives of this review follow the logical need to re-examine and compare the relevance and appropriateness of each of the animal models that have been used for studying the etiopathogenesis of adolescent idiopathic scoliosis in human in the past 15 to 20 years.  相似文献   
995.
In this study, we report a simple way to produce randomized dispersion magnetite nanoclusters coated with silica (RDMNS) via Stöber process with minor modifications. The morphology of silica coated magnetite nanoclusters was emphasized by studying various reaction parameters including alcohols with different polarities as co-solvents, concentration of alcohol-water, concentration of alkaline catalyst (ammonia), and concentration of TEOS monomer. The results of transmission electron microscope (TEM) showed that the sizes and morphological behaviour of the magnetite nanoclusters vary accordingly with the different reaction parameters investigated. The results showed that ethanol would be the best candidate as co-solvent in the preparation of randomized dispersion magnetite nanoclusters. Besides, the optimum alcohol-water ratio has been determined to be 70-30% v/v as this concentration range could render desired shape of randomized dispersion magnetite nanoclusters. The volume of ammonia (NH3) catalyst in the reaction media also strongly governs the formation of silica coated magnetite nanoclusters in a desired shape. Apart from that, the addition of TEOS monomer into the reaction media has to be well-controlled as the excess amount of monomer added might affect the thickness of the silica layer that is coated on the magnetite nanoparticles. Prior to silica coating, the bare magnetite nanoparticles were first treated with trisodium citrate (0.5 M) to enhance the particles’ dispersibility. Improvement in the size distribution and dispersibility of the magnetite nanoparticles after the citrate treatment has been examined using TEM. The XRD results show that the magnetite samples retained good crystallinity although they have been surface-modified with citrate group and silica. The Fourier transform infrared (FT-IR) and thermogravimetric analysis (TGA) prove that the magnetite nanoparticles have been successfully coated with citrate and silica. The superparamagnetic behaviour of the magnetite samples was confirmed by VSM. The produced silica coated magnetite nanoclusters possess great potential to be applied in bio-medical research and clinical diagnosis application.  相似文献   
996.
This study addressed the blending and cocuring of resole and epoxy, using NaOH and 4,4′‐diaminodiphenylmethane as curing agents. IR band shifts regarding the molecular interactions were investigated with FTIR. Exothermic peak shifts during cocuring reactions were studied with dynamic DSC. Viscosity increases were measured with a Brookfield LVT viscometer at 100°C. The dynamic mechanical properties of the cocured samples were investigated using rheometric dynamic spectroscopy (RDS). Experimental results revealed that the molecular interactions between resole and epoxy resulted in good compatibility as shown by the single damping peak in the RDS curve and the single glass transition for each cocured sample. Also apparent were accelerated curing rates, leading to shifts of the exothermic peaks to lower temperature and faster viscosity increases. Nevertheless, enhanced gel fractions and increased glass‐transition temperatures (Tg) of the samples were generally observed for this cocured system. The average molecular weight between crosslinked points calculated for the cocured materials also showed much less than the two components. These curing behaviors were quite different from those of the Interpenetrating Polymer Network (IPN) materials, which usually indicated lowered gel fractions, decreased Tg, and higher average molecular weight between crosslinkings than for components. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 80: 963–969, 2001  相似文献   
997.
Thermoplastic polyurethane (TPU)/olefin block copolymer (OBC)/polycaprolactone (PCL) blends (70/20/10 and 50/30/20) were melt-blended to form the first environmental OBC-based triple-shape memory polymer blends. In this work, PCL with low crystalline temperature (switching phase), OBC with medium crystalline temperature (switching phase), and TPU with high crystalline temperature (fixed phase) could form an alternative triple-shape memory polymer (TSMP). Two compatibilizers, OBC-g-glycidyl methacrylate (OBC-g-GMA) and dicumyl peroxide, were confirmed to show a synergistic effect in enhancing the compatibility further through the morphological observation. Crystallinity of both OBC and PCL in the blends with or without modification decreased in comparison with that of pure resin. For dual-shape behaviors, the shape fixing ratio (Rf) and shape recovery ratio (Rr) were up to 96.3% and 91.2% for the GMA and peroxide-modified blends (50/30/20). The higher amount of TPU didn’t give higher recovery ratio, but instead slightly lower Rr due to the morphology difference. For triple-shape behaviors, both TPU/OBC/PCL blend compositions with or without GMA or peroxide modifications gave high Rf(C→B) values in the first fixing stage, but slightly lower values Rf(B→A) in the second fixing stage, especially for (70/20/10) case. On the other hand, a reverse trend was observed for two recovery stages. To enhance the Rf(B→A) in the second fixing stage, higher deformation temperatures were considered, and a measurable increment on Rf(B→A) was attained. Through this subtle adjustment on the temperature difference between high and low deformation temperatures, the theoretical multi-shape memory shape could be readily tailored to meet different applications.  相似文献   
998.
This paper presents, compares and validates two different mathematical models of packed bed storage with PCM, more specifically the heat transfer during charge of the PCM. The first numerical model is a continuous model based on the Brinkman equation and the second numerical model treats the PCM capsules as individual particles (energy equation model). Using the Brinkman model the flow field inside the porous media and the heat transfer mechanisms present in the packed bed systems can be described. On the other hand, using the energy equation model the temperature gradient inside the PCM capsules can be analysed. Both models are validated with experimental data generated by the authors. The experimental set up consists mainly of a cylindrical storage tank with a capacity of 3.73 L full of spherically encapsulated PCM. The PCM used has a storage capacity of 175 kJ/kg between ?2–13 °C. The results from the energy equation model show a basic understanding of cold charging. Moreover, three different Nu correlations found in the literature were analysed and compared. All of them showed the same temperature profile of the PCM capsules; hence any of them could be used in future models. The comparison between both mathematical models indicated that free convection is not as important as forced convection in the studied case.  相似文献   
999.
The emergence of nomadic multimedia applications, such as multimedia conferencing, distance learning, video phones, video/movie-on-demand, and education-on-demand, has recently generated much interest in multi-hop wireless mesh networks (WMNs) to support diverse Quality-of-Service (QoS). In the existing WMN QoS routing protocols, the methods of bandwidth calculation and allocation were proposed to determine routes with bandwidth guaranteed for QoS applications. This paper studies two NP-hard problems, the maximum bandwidth routing problem (abbreviated to MBRP) and the maximum flow routing problem (abbreviated to MFRP). Given a source node s and a destination node d in a multi-hop wireless mesh network, the MBRP is to determine an s-to-d path that can carry a maximum amount of traffic from s to d and the MFRP is to determine the maximum flow from s to d, both retaining the network bandwidth-satisfied. In this paper, heuristic algorithms for the two problems are proposed. Upper bounds on their optimal values are derived, and a lower bound is derived on the feasible value obtained for the MBRP. With the upper bound and the lower bound, an approximation ratio for the heuristic algorithm of the MBRP is obtained. The effectiveness of the heuristic algorithms is further verified by experiments. A generalized interference model is also discussed.  相似文献   
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号