首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1211篇
  免费   33篇
  国内免费   2篇
电工技术   12篇
综合类   8篇
化学工业   316篇
金属工艺   36篇
机械仪表   21篇
建筑科学   90篇
矿业工程   3篇
能源动力   49篇
轻工业   122篇
水利工程   12篇
石油天然气   5篇
武器工业   3篇
无线电   79篇
一般工业技术   212篇
冶金工业   77篇
原子能技术   3篇
自动化技术   198篇
  2024年   12篇
  2023年   24篇
  2022年   27篇
  2021年   50篇
  2020年   35篇
  2019年   43篇
  2018年   33篇
  2017年   38篇
  2016年   39篇
  2015年   46篇
  2014年   54篇
  2013年   68篇
  2012年   62篇
  2011年   101篇
  2010年   62篇
  2009年   67篇
  2008年   72篇
  2007年   61篇
  2006年   60篇
  2005年   57篇
  2004年   37篇
  2003年   35篇
  2002年   27篇
  2001年   24篇
  2000年   16篇
  1999年   22篇
  1998年   19篇
  1997年   11篇
  1996年   7篇
  1995年   12篇
  1994年   3篇
  1993年   5篇
  1992年   3篇
  1991年   3篇
  1990年   4篇
  1989年   1篇
  1986年   1篇
  1985年   1篇
  1977年   2篇
  1976年   1篇
  1957年   1篇
排序方式: 共有1246条查询结果,搜索用时 0 毫秒
101.
    
The potential of the copolymer polycaprolactone‐co‐ poly‐d ,l ‐lactic acid (PCLLA ) as a biomaterial for scaffold‐based therapy for breast tissue engineering applications was assessed. First, the synthesized PCLLA was evaluated for its processability by means of additive manufacturing (AM ). We found that the synthesized PCLLA could be fabricated into scaffolds with an overall gross morphology and porosity similar to that of polycaprolactone. The PCLLA scaffolds possessed a compressive Young's modulus (ca 46 kPa ) similar to that of native breast (0.5 ? 25 kPa ), but lacked thermal stability and underwent thermal degradation during the fabrication process. The PCLLA scaffolds underwent rapid degradation in vitro which was characterized by loss of the scaffolds' mechanical integrity and a drastic decrease in mass‐average molar mass (M w) and number‐average molar mass (M n) after 4 weeks of immersion in phosphate buffer solution maintained at 37 °C. The tin‐catalysed PCLLA scaffold was also found to have cytotoxic effects on cells. Although the initial mechanical properties of the PCLLA scaffolds generally showed potential for applications in breast tissue regeneration, the thermal stability of the copolymer for AM processes, biocompatibility towards cells and degradation rate is not satisfactory at this stage. Therefore, we conclude that research efforts should be geared towards fine‐tuning the copolymer synthesizing methods. © 2016 Society of Chemical Industry  相似文献   
102.
103.
    
With an overall collection and recycling rate of 74%, the material cycle for glass packaging is well established in the European Union. However, knowledge of the composition of the recycled glass cullet is necessary to avoid creeping accumulation of undesirable contaminants into the material cycle. Due to their toxic properties, this applies in particular for heavy metals, for example, lead. The state-of-the-art technology for detection of lead in recycling glass sorting is X-ray fluorescence (XRF). Due to lower regulatory demands, as well as increasingly economical hardware, laser-based detection techniques, like Laser-Induced Breakdown Spectroscopy (LIBS) may provide an alternate approach in industrial glass sorting to reach comparable detection limits and rates. In our work, CO2-LIBS was investigated as an alternative tool for the determination of lead in glass cullet. Instead of usually utilized spectrometers, a combination of spectral filters and photodiode was employed to facilitate a fast detection rate. Glass samples with different lead content were investigated in two spectral ranges with respect to detection limits, detection speed, and accuracy. The results are compared to a commercial XRF-sorting machine for glass cullet. It was found that comparable speeds and accuracies for lead detection in glasses can be reached.  相似文献   
104.
    
A wide range of parameters was investigated by numerical calculations concerning their impact on DC stray current corrosion of reinforced concrete (RC) structures. A simplified model geometry was used to extract the relevant parameters and their interaction in terms of stray current-affected structures. This study mainly focuses on RC structures that are fitted with cathodic protection installations. The findings reveal a complex interaction between the investigated parameters. The possible relevance of further parameters, which is not the subject of this study, was emphasised.  相似文献   
105.
    
A protein-free formation of bone-like apatite from amorphous precursors through ball-milling is reported. Mg2+ ions are crucial to achieve full amorphization of CaCO3. Mg2+ incorporation generates defects which strongly retard a recrystallization of ball-milled Mg-doped amorphous calcium carbonate (BM-aMCC), which promotes the growth of osteoblastic and endothelial cells in simulated body fluid and has no effect on endothelial cell gene expression. Ex situ snapshots of the processes revealed the reaction mechanisms. For low Mg contents (<30%) a two phase system consisting of Mg-doped amorphous calcium carbonate (ACC) and calcite “impurities” was formed. For high (>40%) Mg2+ contents, BM-aMCC follows a different crystallization path via magnesian calcite and monohydrocalcite to aragonite. While pure ACC crystallizes rapidly to calcite in aqueous media, Mg-doped ACC forms in the presence of phosphate ions bone-like hydroxycarbonate apatite (dahllite), a carbonate apatite with carbonate substitution in both type A (OH) and type B (PO43−) sites, which grows on calcite “impurities” via heterogeneous nucleation. This process produces an endotoxin-free material and makes BM-aMCC an excellent “ion storage buffer” that promotes cell growth by stimulating cell viability and metabolism with promising applications in the treatment of bone defects and bone degenerative diseases.  相似文献   
106.
    
The α-tocopherol long-chain metabolite α-tocopherol-13′-hydroxy-chromanol (α-T-13′-COOH) is a proposed regulatory intermediate of endogenous vitamin E metabolism. Effects of α-T-13′-COOH on cell viability and adaptive stress response are not well understood. The present study aims to investigate the concentration-dependent effects of α-T-13′-COOH on cellular redox homeostasis, genotoxicity, and cytotoxicity in murine RAW264.7 macrophages as a model system.  相似文献   
107.
    
ABSTRACT

Future adaptive applications require lightweight and stiff materials with high active strain but low energy consumption. A suitable combination of these properties is offered by carbon nanotube-based actuators. Papers made of carbon nanotubes (CNTs) are charged within an electrolyte, which results in an electrical field forming a double-layer of ions at their surfaces and a deflection of the papers can be detected. Until now, there is no generally accepted theory for the actuation mechanism. This study focuses on the actuation mechanism of CNT papers, which represent architectures of randomly oriented CNTs. The samples are tested electrochemically in an in-plane set-up to detect the free strain. The elastic modulus of the CNT papers is analyzed in a tensile test facility. The influence of various ion sizes of water-based electrolytes is investigated.

During the tests, four parameters that have a significant influence on the mechanical performance of CNT papers were identified: the test conditions, the electrical charging, the microstructure and the ion size. All of these influencing factors point to the mechanically weak inter-tube linking at which the actuation seems to take place. Quadratic voltage-strain correlation suggests a combination of electrostatic and volumetric effects as the possible reason for CNT paper actuation.

Abbreviations: CNT: carbon nanotubes; CV: cyclic voltammetry; CVD: chemical vapor deposition; HiPCO: high pressure carbon monoxide; IL: ionic liquid; MWCNT: multi-walled carbon nanotube; MW: multi-walled; NHE: normal hydrogen electrode; PDMS: polydimethylsiloxane; PMMA: polymethylmethacrylate; PPy: polypyrrole; PVDF: polyvinylidenefluoride; SCE: saturated calomel electrode; SWCNT: single-walled carbon nanotube; SW: single-walled; 1M: one molar concentration  相似文献   
108.
    
This article outlines advances in molecular modeling and simulation using massively parallel high‐performance computers (HPC). In the SkaSim project, partners from the HPC community collaborated with users from science and industry. The aim was to optimize the prediction of thermodynamic property data in terms of efficiency, quality and reliability using HPC methods. In this context, various topics were dealt with: atomistic simulation of homogeneous gas bubble formation, surface tension of classical fluids and ionic liquids, multicriteria optimization of molecular models, the development of the molecular simulation codes ls1 mardyn and ms2, atomistic simulation of gas separation processes, molecular membrane structure generators, transport resistors and the evaluation of predictive property data models based on specific mixture types.  相似文献   
109.
    
A nanocomposite material based on copper(II) oxide (CuO) and its utilization as a highly selective and stable gas‐responsive electrical switch for hydrogen sulphide (H2S) detection is presented. The material can be applied as a sensitive layer for H2S monitoring, e.g., in biogas gas plants. CuO nanoparticles are embedded in a rigid, nanoporous silica (SiO2) matrix to form an electrical percolating network of low conducting CuO and, upon exposure to H2S, highly conducting copper(II) sulphide (CuS) particles. By steric hindrance due to the silica pore walls, the structure of the network is maintained even though the reversible reaction of CuO to CuS is accompanied by significant volume expansion. The conducting state of the percolating network can be controlled by a variety of parameters, such as temperature, electrode layout, and network topology of the porous silica matrix. The latter means that this new type of sensing material has a structure‐encoded detection limit for H2S, which offers new application opportunities. The fabrication process of the mesoporous CuO@SiO2 composite as well as the sensor design and characteristics are described in detail. In addition, theoretical modeling of the percolation effect by Monte‐Carlo simulations yields deeper insight into the underlying percolation mechanism and the observed response characteristics.  相似文献   
110.
    
New bridge in HafenCity – pedestrian and bicycle crossing with integrated infrastructure via Baakenhafen In Hamburg, extensive infrastructure projects are being implemented as part of the revitalization of the Baakenhafen district. Besides others this includes the new central pedestrian and bicycle crossing via Baakenhafen. The slender steel bridge with a span length of 65 m is the result of a design competition sponsored by HafenCity Hamburg GmbH, won by Hamburg based architects Gerkan, Marg and Partner (gmp architects) in collaboration with the structural engineers of Knippers Helbig from Stuttgart. In addition to its function as a route connection, the bridge also serves as a logistical infrastructure construction for the sole supply of the district with the necessary energy sources and media. The completion in May 2018 was therefore an integral part of urban development within HafenCity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号