首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   53篇
  免费   0篇
化学工业   14篇
金属工艺   9篇
无线电   1篇
一般工业技术   27篇
冶金工业   2篇
  2021年   4篇
  2020年   1篇
  2019年   2篇
  2016年   1篇
  2013年   2篇
  2012年   3篇
  2011年   8篇
  2010年   6篇
  2009年   15篇
  2008年   3篇
  2007年   5篇
  2006年   3篇
排序方式: 共有53条查询结果,搜索用时 15 毫秒
21.
CdS nanowires were solvothermally synthesized from Cd(NO3)2 and S powder using ethylenediamine as a solvent and polyethylene glycol (PEG) as a template. Hexagonal CdS with P63mc space group was detected using XRD and SAED, results which are in good accordance with those obtained by the simulation. SEM, TEM and HRTEM revealed the gradual development of nanowires in the [0 0 1] direction with a number of atoms aligning in a crystal lattice. Raman spectra of different products showed the fundamental and overtone modes at the same wavenumbers of 300 and 601 cm−1, respectively. Their relative intensities at different molecular weight PEG were influenced by the anisotropic geometry of the products. Their photoluminescence peaks were detected at the same wavelengths of 518 nm. A formation mechanism for CdS nanowires was also proposed to relate to the experimental results.  相似文献   
22.
LiNi0.5Co0.5VO4 nano-crystals were solvothermally prepared using a mixture of LiOH·H2O, Ni(NO3)2·6H2O, Co(NO3)2·6H2O and NH4VO3 in isopropanol at 150–200 °C followed by 300–600 °C calcination to form powders. TGA curves of the solvothermal products show weight losses due to evaporation and decomposition processes. The purified products seem to form at 500 °C and above. The products analyzed by XRD, selected area electron diffraction (SAED), energy dispersive X-ray (EDX) and atomic absorption spectrophotometer (AAS) correspond to LiNi0.5Co0.5VO4. V–O stretching vibrations of VO4 tetrahedrons analyzed using FTIR and Raman spectrometer are in the range of 620–900 cm−1. A solvothermal reaction at 150 °C for 10 h followed by calcination at 600 °C for 6 h yields crystals with lattice parameter of 0.8252 ± 0.0008 nm. Transmission electron microscope (TEM) images clearly show that the solvothermal temperatures play a more important role in the size formation than the reaction times.  相似文献   
23.
Large-scale covellite CuS hexaplates were successfully synthesized by the 200 °C solvothermal reactions of CuCl2.2H2O and (NH4)2S in C2H5OH-H2O mixed solvents containing HCOOH as a pH stabilizer, including different amounts and molecular weights (MWs) of polyethylene glycol (PEG). By using XRD and SAED, CuS (hcp) was detected. XRD peaks of the product, synthesized in a solution containing 5 g PEG6000 and 1.5 ml HCOOH for 5 h, are in accordance with those of the simulation and database. The (110) peak shows the preferential growth, corresponding to the hexaplates, characterized using SEM, TEM and HRTEM. CuS hexaplates with the (100) and (010) lattice planes at an angle of 120° were detected on the flat surface, and the (002) lattice plane on the edge. UV-vis absorption edge was detected at 610 nm (2.03 eV), and the PL emission at 361 nm (3.43 eV). Phase and morphology formations were also explained according to the experimental results.  相似文献   
24.
Hexagonal ZnO nanostructure flowers were successfully synthesized from a 1:15 molar ratio of Zn(CH3COO)22H2O to KOH using 180 W microwave radiation for 20 min. The product phase was detected using X-ray diffraction (XRD) and selected area electron diffraction (SAED). A diffraction pattern was also simulated and was found to be in accordance with those of the experiment and the JCPDS database. Raman spectrometry revealed the presence of four vibration peaks at 337.85, 381.13, 437.54 and 583.30 cm? 1. The product, spear-shaped nanorods in flower-like clusters, was characterized using both scanning electron microscopy (SEM) and transmission electron microscopy (TEM). High resolution TEM (HRTEM) showed that growth of the spear-shaped nanorods was in the [001] direction, which was normal to the (002) planes composing a lattice fringe of the nanorods. A formation mechanism of hexagonal ZnO nanostructure flowers was also proposed.  相似文献   
25.
Cadmium sulfide nanorods and nanoparticles were successfully produced by a solvothermal reaction at 200 °C for 24 h using ethylenediamine and water as pure and mixed solvents. The products were analyzed by X-ray diffraction, Raman spectroscopy and transmission electron microscopy. In pure ethylenediamine, they show the hexagonal structure CdS nanorods with 0.2-2 μm long and 30 nm diameter, and the 1LO and 2LO modes at 299.36 and 600.72 cm− 1, respectively. Growth of CdS nanorods is along the [001] direction, interpreted by HRTEM images and SAED patterns. In the 50:50 vol.% of ethylenediamine:water mixed solvents, the length of CdS nanorods decreased to 100-200 nm. The CdS nanoparticles were produced when pure water was used.  相似文献   
26.
LiOH·H2O, Co(NO3)2·6H2O and NH4VO3 were used to prepare nano-crystalline LiCoVO4 by 150 °C solvothermal reaction in isopropanol for 10–360 h and subsequent calcination at 300–500 °C for 6 h. XRD, TEM and selected area electron diffraction (SAED) revealed the presence of nano-crystalline LiCoVO4 with inverse spinel structure. The V–O stretching vibration modes of VO4 tetrahedrons were detected by FTIR over the range 617–835 cm− 1 and by Raman spectrometer at 805.7 and 783.1 cm− 1. Co, V and O were detected by EDX. TGA of solvothermal products shows weight loss due to the evaporation and decomposition processes at 40–648 °C.  相似文献   
27.
MnWO4 with nano-plates in flower-like clusters was produced from the mists of the solutions containing MnCl2·4H2O and Na2WO4·2H2O at different pH values by 300-900 W cyclic microwave radiation. The phase was detected by XRD and SAED, and was in accordance with that of the simulation. The flowers were characterized using SEM and TEM, and their lattice planes using HRTEM. The vibration spectra were characterized using Raman and FTIR spectrometers. Their photoluminescence is at 409-420 nm.  相似文献   
28.
Gd-doped PbMoO_4 nanoparticles were prepared by a refluxing method at 80℃ for 2 h.Effect of molar content of Gd dopant on phase,morphology and optical properties was studied.The as-prepared Gddoped PbMoO_4 samples can be indexed to pure tetragonal PbMoO_4 phase.The particles size of PbMoO_4 is decreased with increasing in the molar content of Gd dopant from 15.20±3.04 nm for pure PbMoO_4 to 8.72±1.53 nm for 5 mol% Gd-doped PbMoO_4.The absorption of 5 mol% Gd-doped PbMoO_4 nanoparticles shows red-shift caused by lattice distortion of PbMoO_4.The photocatalytic performance of 5 mol% Gddoped PbMoO_4 nanoparticles shows the highest degradation of rhodamine B(RhB) of 97.92% under UV radiation and 67.65% under visible radiation because Gd~(3+) dopant as an electron acceptor plays the role in enhancing the separation of electron-hole pair.  相似文献   
29.
Copper sulfide nanostructured spheres and nanotubes were successfully synthesized, using a microwave-assisted solvothermal method, by the decomposition of [Cu(CH3CSNH2)2]Cl2 complexes, formed by the reaction of CuCl2·2H2O and CH3CSNH2 in ethylene glycol at different pH values, and identified by CHNS/O and FTIR analyses. The decrease in bonding energy of N-H revealed the coordination of copper ions and thioacetamide molecules. It was specified that nitrogen atoms of thioacetamide molecules were used to form Cu-thioacetamide complexes. XRD, SEM, TEM and SAED analyses show that the products were hexagonal CuS spheres in an extremely low pH solution, and hexagonal CuS nanotubes at a pH 13. Their Raman spectra show sharp peaks at 473 cm− 1, identified as the S-S stretching mode of S2 ions at the 4e sites.  相似文献   
30.
Hexagonal prism ZnO nanorods were successfully grown on Zn substrates by the 120 °C and 24 h hydrothermal reaction of the solutions with pH of 9–12. Results from XRD, SEM, TEM, SAED and HRTEM showed that the as-synthesized products were wurtzite ZnO with the shape of hexagonal prism nanorods grown along the [0 0 1] direction with smooth prismatic side planes. The PL spectra showed strong emission band at 543 nm in the green-yellow region due to the recombination of electrons trapped in singly ionized oxygen vacancies and photoexcited holes. This facile, reproducible and effective low-cost approach is promising for the future large-scale synthesis of wurtzite ZnO nanostructures for different applications in nanotechnology.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号