首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1783篇
  免费   94篇
  国内免费   6篇
电工技术   38篇
综合类   12篇
化学工业   556篇
金属工艺   45篇
机械仪表   40篇
建筑科学   127篇
矿业工程   2篇
能源动力   52篇
轻工业   136篇
水利工程   3篇
石油天然气   3篇
无线电   128篇
一般工业技术   342篇
冶金工业   126篇
原子能技术   18篇
自动化技术   255篇
  2023年   18篇
  2022年   34篇
  2021年   45篇
  2020年   28篇
  2019年   43篇
  2018年   41篇
  2017年   32篇
  2016年   56篇
  2015年   66篇
  2014年   69篇
  2013年   81篇
  2012年   84篇
  2011年   137篇
  2010年   93篇
  2009年   100篇
  2008年   84篇
  2007年   89篇
  2006年   58篇
  2005年   64篇
  2004年   54篇
  2003年   43篇
  2002年   46篇
  2001年   24篇
  2000年   30篇
  1999年   39篇
  1998年   45篇
  1997年   28篇
  1996年   31篇
  1995年   23篇
  1994年   14篇
  1993年   21篇
  1992年   18篇
  1991年   26篇
  1990年   19篇
  1989年   16篇
  1988年   17篇
  1987年   13篇
  1986年   18篇
  1985年   6篇
  1984年   11篇
  1983年   10篇
  1982年   11篇
  1981年   15篇
  1979年   6篇
  1978年   8篇
  1977年   9篇
  1976年   10篇
  1975年   6篇
  1969年   5篇
  1966年   5篇
排序方式: 共有1883条查询结果,搜索用时 9 毫秒
51.
52.
A systematic, diversity-oriented synthesis approach was employed to access a natural product-inspired flavonoid library with diverse chemical features, including chemical properties, scaffold, stereochemistry, and appendages. Using Cell Painting, the effects of these diversity elements were evaluated, and multiple chemical features that predict biological performance diversity were identified. Scaffold identity appears to be the dominant predictor of performance diversity, but stereochemistry and appendages also contribute to a lesser degree. In addition, the diversity of chemical properties contributed to performance diversity, and the driving chemical property was dependent on the scaffold. These results highlight the importance of key chemical features that may inform the creation of small-molecule, performance-diverse libraries to improve the efficiency and success of high-throughput screening campaigns.  相似文献   
53.
A flexible method is presented, which enables the fabrication of porous as well as dense Si3N4/nano-SiC components by using Si3N4 powder and a preceramic polymer (polycarbosilazane) as alternative ceramic forming binder. The SiCN polymer benefits consolidation as well as shaping of the green body and partially fills the interstices between the Si3N4 particles. Cross-linking of the precursor at 300 °C increases the mechanical stability of the green bodies and facilitates near net shape machining. At first, pyrolysis leads to porous ceramic bodies. Finally, subsequent gas pressure sintering results in dense Si3N4/nano-SiC ceramics. Due to the high ceramic yield of the polycarbosilazane binder, the shrinkage during sintering is significantly reduced from 20 to 15 lin.%. Investigations of the sintered ceramics reveal, that the microstructure of the Si3N4 ceramic contains approx. 6 vol.% nano-scaled SiC segregations, which are located both at the grain boundaries and as inclusions in the Si3N4 grains.  相似文献   
54.
For 64Cu radiolabeling of biomolecules to be used as in vivo positron emission tomography (PET) imaging agents, various chelators are commonly applied. It has not yet been determined which of the most potent chelators—NODA‐GA ((1,4,7‐triazacyclononane‐4,7‐diyl)diacetic acid‐1‐glutaric acid), CB‐TE2A (2,2′‐(1,4,8,11‐tetraazabicyclo[6.6.2]hexadecane‐4,11‐diyl)diacetic acid), or CB‐TE1A‐GA (1,4,8,11‐tetraazabicyclo[6.6.2]hexadecane‐4,11‐diyl‐8‐acetic acid‐1‐glutaric acid)—forms the most stable complexes resulting in PET images of highest quality. We determined the 64Cu complex stabilities for these three chelators by a combination of complex challenge and an in vivo approach. For this purpose, bioconjugates of the chelating agents with the gastrin‐releasing peptide receptor (GRPR)‐affine peptide PESIN and an integrin αvβ3‐affine c(RGDfC) tetramer were synthesized and radiolabeled with 64Cu in excellent yields and specific activities. The 64Cu‐labeled biomolecules were evaluated for their complex stabilities in vitro by conducting a challenge experiment with the respective other chelators as challengers. The in vivo stabilities of the complexes were also determined, showing the highest stability for the 64Cu–CB‐TE1A‐GA complex in both experimental setups. Therefore, CB‐TE1A‐GA is the most appropriate chelating agent for *Cu‐labeled radiotracers and in vivo imaging applications.  相似文献   
55.
Self‐setting resorbable phosphate cements are characterized by an excellent biocompatibility and bioactivity. However, poor mechanical properties restrict their application. Most studies which characterize phosphate cements mechanically focus on strength measurements. Examinations of mechanical reliability and facture toughness were hardly performed. In this study, calcium phosphate whisker‐reinforced magnesium‐ammonium‐phosphate (struvite) cements were examined at the whisker–matrix interface and the measured strength, reliability and toughness values were correlated to these observations. Moreover, the toughening mechanisms were evaluated. It was shown that whisker incorporation is not beneficial for material strength. It led to a strength decrease from 29.8 to 21.8 MPa by the incorporation of 15 vol% calcium‐deficient hydroxyapatite (CDHA) whiskers compared to the pure struvite cement. Weibull statistics and microstructural observations revealed that this is caused by the whisker–matrix interface, which acts as a flaw. In contrast with that, the reliability increases upon whisker incorporation. Furthermore, the critical stress intensity factor KIC as well as the work‐of‐fracture γwof increase from 0.52 to 0.60 MPam1/2 and from 9.5 to 12.9 J/m² by the addition of 15 vol% CDHA whiskers compared to the original struvite cement. It was shown that whisker pull‐out and crack deflection are the main mechanisms responsible for this increase.  相似文献   
56.
Summary: The dicationic [(dppp)Pd(NCCH3)2](BF4)2 catalyst (dppp = 1,3‐bis(diphenylphosphino)propane) was applied in a liquid monomer, two phase process for the CO/propene copolymerization reaction. For the first time it was possible to synthesize propene/CO copolymers with an activity up to 7 500 g/(mol · h) and molecular weights of 500 000 g/mol. Activities up to 40 000 g/(mol · h) could be obtained with the use of the unsymmetric catalyst [(CF3‐dppp)Pd(NCCH3)](BF4)2 (CF3‐dppp = 1‐diphenylphosphino‐3‐bis[3,5‐di(trifluormethyl)phenyl]phosphinopropane) in homogeneous liquid propene solution.

Granules found after copolymerization.  相似文献   

57.
Radiation‐induced graft copolymerization of hydroxyethyl methacrylate with hydroxyethyl acrylate, acrylic acid or glycidyl methacrylate on ethylene tetrafluoroethylene (ETFE) films allow for tailor‐made synthesis of membranes for high and low temperature fuel cell applications. According to the operating temperatures proton conductivity may be achieved via doping with phosphoric acid or a two‐step sulfonation of the functional monomers. Fuel cell tests provide power densities and internal resistances, which indicate that the membranes are suitable for high and low temperature fuel cells.  相似文献   
58.
Aero-engines operating in dust-laden environments often encounter a lot of dust/sand that causes a severe problem to the TBCs by means of erosion. As the turbine entry temperatures are rising, molten sand is also a big concern to the life-time of TBCs.This paper deals with the TBC behavior under the combined influence of erosion and corrosion attack. Variations in TBC morphology, CMAS infiltration time and CMAS composition and their influence on the erosion resistance at room temperature were investigated. Two different EB-PVD 7YSZ morphologies consisting of a different porosity arrangement were tested in the erosion/corrosion regime. The more ‘Feathery’ structure has a better resistance to erosion compared to a more columnar ‘Normal’ structure, which leads to less degradation of the TBC. However, under the influence of CMAS infiltration the effect was found to be reversed. In general, CMAS-infiltrated EB-PVD TBCs exhibit a higher erosion resistance than the non-infiltrated ones.  相似文献   
59.
A series of well‐defined polymer–drug conjugates were prepared in order to modify the physical properties of a known cytotoxic drug, 7‐ethyl‐10‐hydroxycamptothecin (SN‐38), the active metabolite of irinotecan (CPT‐11). Reversible addition–fragmentation chain transfer (RAFT) polymerisation was used to covalently and site‐specifically append a defined N‐(2‐hydroxypropyl)methacrylamide (HPMA) polymer to SN‐38 using a graft‐from process. These poly‐HPMA–SN‐38 conjugates displayed excellent aqueous solubility and stability, whilst retaining the cytotoxic activity of the parent SN‐38. In vitro co‐culture assays containing both cancer and noncancer cell lines demonstrated the specificity of RAFT‐derived poly‐HPMA–SN‐38 conjugates for cancerous cells. The concept of post‐optimisation modification of small‐molecule drugs through a graft‐from polymer conjugation method is introduced.  相似文献   
60.
The CYP171 enzyme is known to catalyse a key step in the steroidogenesis of mammals. The substrates progesterone and pregnenolone are first hydroxylated at the C17 position, and this is followed by cleavage of the C17?C20 bond to yield important precursors for glucosteroids and androgens. In this study, we focused on the reaction of the bovine CYP17A1 enzyme with progesterone as a substrate. On the basis of a created homology model, active‐site residues were identified and systematically mutated to alanine. In whole‐cell biotransformations, the importance of the N202, R239, G297 and E305 residues for substrate conversion was confirmed. Additionally, mutation of the L206, V366 and V483 residues enhanced the formation of the 16α‐hydroxyprogesterone side product up to 40 % of the total product formation. Furthermore, residue L105 was found not to be involved in this side activity, which contradicts a previous study with the human enzyme.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号