首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   400篇
  免费   13篇
电工技术   5篇
化学工业   91篇
金属工艺   5篇
机械仪表   8篇
建筑科学   14篇
能源动力   15篇
轻工业   17篇
水利工程   3篇
石油天然气   2篇
无线电   55篇
一般工业技术   116篇
冶金工业   37篇
原子能技术   5篇
自动化技术   40篇
  2024年   1篇
  2023年   5篇
  2022年   12篇
  2021年   15篇
  2020年   11篇
  2019年   7篇
  2018年   10篇
  2017年   11篇
  2016年   11篇
  2015年   10篇
  2014年   11篇
  2013年   24篇
  2012年   25篇
  2011年   21篇
  2010年   13篇
  2009年   11篇
  2008年   17篇
  2007年   25篇
  2006年   19篇
  2005年   14篇
  2004年   17篇
  2003年   8篇
  2002年   7篇
  2001年   7篇
  2000年   7篇
  1999年   5篇
  1998年   17篇
  1997年   13篇
  1996年   6篇
  1995年   5篇
  1994年   2篇
  1993年   9篇
  1992年   1篇
  1991年   2篇
  1990年   2篇
  1989年   5篇
  1988年   3篇
  1987年   2篇
  1986年   2篇
  1985年   2篇
  1984年   1篇
  1983年   5篇
  1982年   3篇
  1981年   3篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
  1976年   1篇
  1973年   1篇
  1969年   1篇
排序方式: 共有413条查询结果,搜索用时 15 毫秒
11.
Off-state degradation in drain-extended NMOS transistors is studied. Carefully designed experiments and well-calibrated simulations show that hot carriers, which are generated by impact ionization of surface band-to-band tunneling current, are responsible for interface damage during off-state stress. Classical on-state hot carrier degradation has historically been associated with broken equivSi-H bonds at the interface. In contrast, the off-state degradation in drain-extended devices is shown to be due to broken equivSi-O- bonds. The resultant degradation is universal, which enables a long-term extrapolation of device degradation at operating bias conditions based on short-term stress data. Time evolution of degradation due to broken equivSi-O- bonds and the resultant universal behavior is explained by a bond-dispersion model. Finally, we show that, under off-state stress conditions, the interface damage that is measured by charge-pumping technique is correlated with dielectric breakdown time, as both of them are driven by broken equivSi-O- bonds.  相似文献   
12.
Fabrication of FinFETs using bulk CMOS instead of silicon on insulator (SOI) technology is of utmost interest as it reduces the process costs. Using well-calibrated device models and 3-D mixed mode simulations, we show that bulk FinFETs can be optimized with identical performances as that of SOI FinFETs. Optimized bulk FinFETs are compared with the corresponding SOI FinFETs for a range of technology nodes using an extensive simulation and design methodology. Further, we extend the concept of body doping in bulk FinFETs to the case of lightly doped fins unlike the heavily doped fin cases reported earlier. The optimum body doping required for bulk FinFETs, and its multiple advantages are also systematically evaluated. We also show that device parasitics play a crucial role in the optimization of nanoscale bulk FinFETs.  相似文献   
13.

The concept of network caching is determined to be the potential requirement of named data networks (NDN) for enhancing the capabilities of the traditional IP networking. It is responsible for location independent data accesses and optimal bandwidth utilization in multi-path data dissemination. However, the network caching process in NDN introduces security challenges such as content cache poisoning, malicious injection or flooding of the packets and violation in accessing content packets. In this paper, an Improved Merkle Hash Tree-based one-time signature scheme for capability-enhanced security enforcing architecture (IMHT-OTSS-CSEA) is proposed for provisioning data authenticity in a distributed manner for leveraging the capabilities to inform the access privileges of the packets during the process of data dissemination. It is proposed for permitting the routers to verify the forwarded packets’ authenticity in NDN. It is capable in handling the issues that emerge from unsolicited packets during a flooding-based denial of service attacks by supporting the indispensable verification process in routers that confirms the timeliness of packets. The simulation experiments conducted using the open source CCNs platform and Planetlab confirmed a significant mean reduction in delay of 14.61%, superior to the benchmarked schemes. It is identified to minimize the delay incurred in generating bit vectors by a average margin of 13.06%, excellent to the baseline approaches. It also confirmed a mean increase in the true positive rate of 5.42%, a mean increase in the precision rate of 6.04%, decrease in false positive rate of 6.82% and increase in F-measure of 5.62% compared to the baseline approaches in the context of detecting content cache pollution attack respectively.

  相似文献   
14.
15.
Effective integration of various subsystems into the overall process, results in an energy efficient and economic plant design. In this paper, issues related to the area-energy targeting for fired heater integrated heat exchanger networks are studied. Performance of a fired heater is affected by the variables such as fuel fired and air-preheat temperature. These variables along with the minimum approach temperature difference for the heat recovery of the background process, affect the performance of the overall system. A methodology is proposed for the area-energy targeting for fired heater integrated processes. In the proposed methodology, the fired heater heat duty split between the radiation and the convection section is determined using the one gas zone furnace model.  相似文献   
16.
Therapeutic monoclonal antibodies (mAbs) are typically manufactured using mammalian cell cultures in fed-batch bioreactors, with increasing emphasis on meeting productivity and product quality attribute targets that depend strongly on such process variables as nutrient feed rates and bioreactor operating conditions. In this article, we identify, categorize, and address the challenges of achieving both productivity and product quality goals simultaneously, by developing a multivariable, model-based control system that can satisfy multiple production objectives in a fed-batch cell culture process. Here, we discuss model development and present theoretical concepts of observability and controllability that are essential to understanding and handling effectively these intrinsic challenges. Subsequently, we evaluate via simulation the performance of the outer-loop model predictive control and demonstrate the overall capability to satisfy complex production objectives in a laboratory scale bioreactor, as a first step toward the ultimate goal of creating an advanced control system for fed-batch mAb manufacturing processes.  相似文献   
17.
Composites based on natural rubber (NR) and containing organophilic and pristine layered silicates of natural and synthetic origin were produced by melt compounding and sulfur curing. The curing, thermomechanical, and mechanical properties of the mixes, which contained 10 phr (parts per hundred parts of rubber) silicates, were determined. The dispersion of the silicates was studied by X‐ray diffraction (XRD) and transmission electron microscopy (TEM). Organophilic clays accelerated the sulfur curing of NR, which was believed to occur because of a complexation reaction in which the amine groups of the clay intercalants participated. The property improvements caused by the fillers were ranked as follows: organophilic clays > pristine synthetic layered silicate (sodium fluorohectorite) > pristine natural clay (purified sodium bentonite) > precipitated nonlayered silica (used as a reference). This was attributed to partial intercalation of the organophilic clay by NR on the basis of XRD and TEM results and to the high aspect ratio of the fluorohectorite. Apart from intercalation, severe confinement (i.e., the collapse of the interlayer distance) of the organoclays was observed. This peculiar feature was traced to the formation of a zinc coordination complex, which extracted the amine intercalant of the organoclays, thus causing the collapse of the layers. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91: 813–819, 2004  相似文献   
18.
Thermoplastic elastomers, prepared by melt blending of natural rubber (NR) and isotactic polypropylene (PP) through a dynamic vulcanization technique, were developed during the later 1970s. However, they have certain drawbacks due to thermal degradation and higher molecular weight of NR. In the study reported here, NR was masticated to different levels prior its addition to isotactic polypropylene to improve the flow properties and to reduce the incompatibility resulting from molecular weight mismatch of NR/PP thermoplastic blends. Mixing energy curves of uncrosslinked blends and those of dynamically vulcanized blends crosslinked using different cure systems were compared. The mixing energy curves of blends containing NR of different molecular weight (M n) and two grades of PP (injection and film grades) were also compared. Technological and processing properties of the dynamically vulcanized (sulphur and peroxide cure systems) and unvulcanized blends were compared with those of the samples containing unmasticated NR. The results indicated that a number average molecular weight in the range 4 × 105 for NR increased the procoessability without significantly affecting the technological properties of NR/PP thermoplastic blends. Among the three cure systems studied Luperox 101 and dicumyl peroxide gave better technological properties than the sulphur‐cured samples. Two antioxidants, viz. quinoline (TDQ) and imidazole (MBI) type, were tried in NR/PP blends. It was found that TDQ imparts better aging resistance compared to MBI. The improvement in processability due to the reduction in molecular weight of natural rubber by mastication is more noticeable in the case of peroxide vulcanized blends compared to sulphur vulcanized samples. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 2063–2068, 2004  相似文献   
19.
Europium-β-diketone chelate doped poly(methyl methacrylate) and poly(methyl methacrylate)/poly(ethylene co-vinyl acetate) blends have been successfully prepared and characterized. The mechanical properties of the PMMA-EVA systems have been assessed in terms of tensile strength and impact strength. The thermal characteristics and the energy involved in thermal decomposition have been studied. The structural properties of the complex doped polymeric systems reveal that the complex exists in the same crystalline state in the doped systems as it does in the pure state. The orientations of the groups in the host matrix have been found to be affected by the complex loading. The optical properties of the system have been studied by photo luminescence spectroscopy. The fluorescence lifetime have been observed to decrease at greater loadings of the complex; an effect that has been attributed to concentration quenching. The complex doped PMMA/EVA polymer network developed is considered to be a potential candidate for the development of optoelectronic devices those possess superior mechanical properties.  相似文献   
20.
Water treatment process involving simultaneous action of adsorption on different nano and organo-modified nano-clays followed by coagulation-flocculation by alum and poly aluminium chloride (PAC) has been evaluated for the removal of PAHs (naphthalene, acenaphthalene, phenanthrene, fluoranthene, anthracene, and pyrene) from water. When clay minerals along with alum and PAC were used for treatment, 37.4–100.0% removal of PAHs was observed compared to 20–38% removal using normal water treatment process with either alum or alum + PAC. The effectiveness of clay minerals for removal of PAHs followed the order (P < 0.05): halloysitenano-clay (HN-clay) < normal bentonite (NB-clay) < hydrophilic nano-bentonite (HNB-clay) < nano-montmorillonite modified with dimethyl dialkyl amine (DMDA-M-clay) ≈ nano-montmorillonite modified with octadecylamine and aminopropyltriethoxysilane (ODAAPS-M-clay) ≈ nano-montmorillonite modified with octadecylamine (ODA-M-clay) in combination with alum + PAC. The modified treatment process (alum + PAC + clay minerals), where water was initially treated with clays followed by normal process of coagulation (alum + PAC), was found to be the most effective method with maximum removal for ODAAPS-M-clay (97.7–100.0%) which is at par wih ODA-M (97.0–100.0%), and DMDA-M-clay (94.8–100%). The removal of PAHs varied in the order: naphthalene ≈ acenaphthalene > anthracene ≈ pyrene > phenanthrene > fluoranthrene. The treatment combination having the maximum removal capacity was also used eficiently for the removal of PAHs from natural and fortified natural water. This article demonstrated adsorption-coagulation integrated system has the potential to remediate PAHs polluted water.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号