首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   674篇
  免费   48篇
  国内免费   6篇
电工技术   10篇
化学工业   181篇
金属工艺   21篇
机械仪表   10篇
建筑科学   16篇
矿业工程   2篇
能源动力   37篇
轻工业   57篇
水利工程   2篇
无线电   85篇
一般工业技术   168篇
冶金工业   16篇
原子能技术   9篇
自动化技术   114篇
  2024年   4篇
  2023年   15篇
  2022年   36篇
  2021年   56篇
  2020年   33篇
  2019年   36篇
  2018年   46篇
  2017年   41篇
  2016年   44篇
  2015年   18篇
  2014年   42篇
  2013年   58篇
  2012年   43篇
  2011年   43篇
  2010年   33篇
  2009年   34篇
  2008年   27篇
  2007年   29篇
  2006年   11篇
  2005年   13篇
  2004年   9篇
  2003年   7篇
  2002年   7篇
  2001年   6篇
  2000年   2篇
  1999年   4篇
  1998年   2篇
  1997年   4篇
  1996年   3篇
  1995年   1篇
  1993年   2篇
  1992年   2篇
  1991年   4篇
  1990年   2篇
  1988年   2篇
  1987年   3篇
  1986年   3篇
  1985年   1篇
  1984年   1篇
  1982年   1篇
排序方式: 共有728条查询结果,搜索用时 0 毫秒
121.
122.
123.
124.
Advanced high-energy plasma systems are being used to achieve the benefits of the high-velocity oxy-fuel (HVOF) system without losing the inherent advantages of plasma for coating of gas turbine parts. MCrAlY coatings play a very important role in the performance and reliability of gas turbine components. One of the important considerations for next generation of gas turbines, which have more demanding conditions and need to withstand ever increasing operating temperatures, is that they should possess very low oxygen content levels in the coating. Low oxygen content coatings are applied by the expensive low-pressure plasma spray (LPPS)/vacuum plasma spray (VPS) technique for critical components in aero- and land-based gas turbines. This work deals with the development of low-cost LPPS equivalent coatings (having low oxygen content) using the high-energy high-velocity plasma spray (HEHVPS) gun and inert gas shroud. A comparison has also been made with CoNiCrAlY coatings by HVOF.  相似文献   
125.
We have synthesized an annealed porous aerogel titania (LUAG2), which demonstrates a very high photocatalytic activity for aldehydes and perchloroethylene (PCE) photocatalytic oxidation (PCO) in gas phase under blacklight and fluorescent light irradiation. LUAG2 has a BET surface area of 237 m2/g and a porosity of 0.31 (volume fraction). X-ray diffraction (XRD) analysis shows LUAG2 is nearly pure anatase. It has improved the destruction of PCE and aldehydes as a group by 10-34% with black light compared to Degussa P-25. The optimum water vapor to butyraldehyde molar ratio is around 1/3. LUAG2 also shows better mineralization to CO2 than Degussa P-25 TiO2 does. Under irradiation of a 4 W fluorescent lamp LUAG2 gives a consistently higher conversion than that of Degussa P-25. The highly active photocatalyst indicates potential applications in indoor and outdoor environmental pollution control. A visible-light-responsive TiO2, NTB 200, is also investigated for comparison purposes.  相似文献   
126.
In this paper a fuzzy logic (FL) based model reference adaptive system (MRAS) speed observer for high performance AC drives is proposed. The error vector computation is made based on the rotor-flux derived from the reference and the adaptive model of the induction motor. The error signal is processed in the proposed fuzzy logic controller (FLC) for speed adaptation. The drive employs an indirect vector control scheme for achieving a good closed loop speed control. For powering the drive system, a standalone photovoltaic (PV) energy source is used. To extract the maximum power from the PV source, a constant voltage controller (CVC) is also proposed. The complete drive system is modeled in MATLAB/Simulink and the performance is analyzed for different operating conditions.  相似文献   
127.
128.
We have studied the fabrication of Single Walled Carbon Nanotube (SWNT)-based Thin Film Transistors (TFTs) using Roll-to-Roll (R2R) gravure printer and inkjet printer on PET foils to show the possibility of printed electronics in point of mass production and low cost. In this paper, for realization of all printed multi-bits digital circuit, all printed positive-edge triggered master-slave D flip-flop (DFF) was fabricated on PET foil using printed SWNT TFTs. The printed DFF, consists of 8 NAND gates and 4 inverters, exhibit propagation delay of 75 ms at the input clock signal of 5 Hz.  相似文献   
129.
Research on flexible electronics has grown exponentially over the last decade. Researchers around the globe are developing a wide range of flexible systems, including displays [1, 2], sensors [3-5], RFID tags [6, 7] and other similar devices [8]. Innovations in materials have been key to the increased research success in this field of research in recent years [9]. Transistors, interconnects, memory cells, passive components and other assorted devices all have challenging material demands for flexible electronics to become a reality. Nanomaterials of various kinds have been found to represent a tremendously powerful tool, with nanoparticles [10], nanotubes, nanowires [3, 11] and engineered organic molecules [12, 13] contributing to the realization of high-performance semiconductors, dielectrics and conductors for flexible electronics applications. Nanomaterials offer tunability in terms of performance, solution processability and processing temperature requirements, which makes them very attractive as building blocks for flexible electronic systems. Indeed, such systems represent some of the largest families of commercially produced nanomaterials today, and numerous commercial products based on nanoparticle formulations are widely available. This special issue focuses on the rapidly blossoming field of flexible electronics, with a particular focus on the use of nanotechnology to facilitate flexible electronic materials, processes, devices and systems. Contributions to the issue describe the development of nanomaterials-including nanoparticles, nanotubes, nanowires and carbon-based thin films-for use in conductors, transparent electrodes, semiconductors and dielectrics. The articles feature innovations in nanomanufacturing and novel materials, as well as the application of these technologies to advanced flexible devices and systems. As flexible electronics systems move rapidly towards successful commercial deployment, it is extremely likely that they will exploit nanomaterials as building blocks. Developments in the field will help to leverage the power of these materials to realize novel functionalities in flexible form factors. This special issue provides a view of the state of the art in these technologies, and gives a vision of the coming innovations that will make flexible electronics a reality. References [1] Gelinck G H et al 2004 Flexible active-matrix displays and shift registers based on solution-processed organic transistors Nature Mater. 3 106-10 [2] Zhou L, Wanga A, Wu S C, Sun J, Park S and Jackson T N 2006 All-organic active matrix flexible display Appl. Phys. Lett. 88 083502 [3] Fan Z, Ho J C, Jacobson Z A, Razavi H and Javey A 2008 Large-scale, heterogeneous integration of nanowire arrays for image sensor circuitry Proc. Natl Acad. Sci. 105 11066 [4] Sekitani T et al 2009 Organic nonvolatile memory transistors for flexible sensor arrays Science 326 1516-9 [5] Mannsfeld S C B et al 2010 Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers Nature Mater. 9 859-64 [6]Subramanian V, Frechet J M J, Chang P C, Huang D C, Lee J B, Molesa S E, Murphy A R, Redinger D R and Volkman S K 2005 Progress toward development of all-printed RFID tags: materials, processes, and devices Proc. IEEE 93 1330-8 [7] Jung M et al 2010 All-printed and roll-to-roll-printable 13.56 MHz-operated 1 bit RF tag on plastic foils IEEE Trans. Electron. Devices 57 571-80 [8] Kim D-H et al 2011 Epidermal electronics Science 333 838-43 [9] Wagner S and Bauer S 2012 Materials for stretchable electronics MRS Bull. 37 207 [10] Grouchko M, Kamyshny A and Magdassi S 2009 Formation of air-stable copper-silver core-shell nanoparticles for inkjet printing J. Mater. Chem. 19 3057-62 [11] Takei K et al 2010 Nanowire active-matrix circuitry for low-voltage macroscale artificial skin Nature Mater. 9 821-6 [12] Sekitani T, Zschieschang U, Klauk H and Someya T 2010 Flexible organic transistors and circuits with extreme bending stability Nature Mater. 9 1015-22 [13] Park S, Wang G, Cho B, Kim Y, Song S, Ji Y, Yoon M and Lee T 2012 Flexible molecular-scale electronic devices Nature Nanotechnol. 7 438-42.  相似文献   
130.
The seismic rehabilitation of historical masonry buildings necessitates a quantitative understanding of the repointing mortar under variable strain rates. In Part-1 of this paper, plain and fibre reinforced hydraulic lime mortar specimens were examined under compression, flexure and direct shear to evaluate the post-crack response under quasi-static loading. It was seen that although the fibres enhance the flexural toughness of hydraulic lime mortar, the material is weakest in Mode I fracture. In Part-2 of this paper, the authors describe the strain rate sensitivity of hydraulic lime mortar on the basis of impact testing of notched beams. The mixes were identical to those examined in Part-1, and the dynamic response was evaluated using a drop-weight impact machine for strain rates in the range of 10?6 to 10 s?1. The authors found that compared to fibre reinforced Portland cement-based mortar and concrete, the flexural response of hydraulic lime mortar is more sensitive to strain rate.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号