首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   674篇
  免费   48篇
  国内免费   6篇
电工技术   10篇
化学工业   181篇
金属工艺   21篇
机械仪表   10篇
建筑科学   16篇
矿业工程   2篇
能源动力   37篇
轻工业   57篇
水利工程   2篇
无线电   85篇
一般工业技术   168篇
冶金工业   16篇
原子能技术   9篇
自动化技术   114篇
  2024年   4篇
  2023年   15篇
  2022年   36篇
  2021年   56篇
  2020年   33篇
  2019年   36篇
  2018年   46篇
  2017年   41篇
  2016年   44篇
  2015年   18篇
  2014年   42篇
  2013年   58篇
  2012年   43篇
  2011年   43篇
  2010年   33篇
  2009年   34篇
  2008年   27篇
  2007年   29篇
  2006年   11篇
  2005年   13篇
  2004年   9篇
  2003年   7篇
  2002年   7篇
  2001年   6篇
  2000年   2篇
  1999年   4篇
  1998年   2篇
  1997年   4篇
  1996年   3篇
  1995年   1篇
  1993年   2篇
  1992年   2篇
  1991年   4篇
  1990年   2篇
  1988年   2篇
  1987年   3篇
  1986年   3篇
  1985年   1篇
  1984年   1篇
  1982年   1篇
排序方式: 共有728条查询结果,搜索用时 15 毫秒
721.
Tris-(8-hydroxyquinoline) metal complex Znq2, used as light-emitting layer in electroluminescent (EL) devices was synthesized and optical properties of as-deposited Znq2 in thin films were studied. Interesting phenomenon was observed while studying the ageing and degradation behavior of Znq2 films and consequently a stable form having strong blue photoluminescence (peak 465 nm) was discovered. This converted (from green to blue emitting) film has higher molecular packing density and comparable photoluminescence intensity with Znq2 film. Here, we report on the production of this blue material under controlled conditions and its optical properties.The thin films have been deposited by thermal evaporation on quartz and silicon substrates. The optical constants (n and k) of green Znq2 film and converted (to blue) thin films have been determined using spectroscopic ellipsometry. Environment induced effects on optical properties of films have been studied using ellipsometry, photoluminescence and UV–vis transmission measurements.  相似文献   
722.
Float glass has immense applications such as sensor glass, micro-processor glass and decorative glass; because of its exceptional wear resistance, chemical and thermal characteristics. Nevertheless, researchers are still bearing decisive issues, which affect its application. These issues are profile inaccuracy and chipping because of its poor machining characteristics and hence high precision machining. The objective of the present study is to condemn the chipping related hindrances while using multi-shaped diamond abrasive tools to create blind holes. The tools, which applied, are named as hollow abrasive tool, pinpointed conical tool, flat cylindrical tools and concave circular tool. The experimental trials were performed by rotary ultrasonic drilling (RUD) and CNC conventional drilling (CD). The actual industrial conditions and parameters were considered throughout the experimentation. Physics behind the formation of chipping on hole periphery by RUD and CD are revealed. In addition, individual mechanisms of multi-shape tools with respect to chipping are analyzed. The results show that RUD process has attained the smallest measurement of chip radial distance as compared to CD for all types of tool. Finally, the concave circular tool is found as the best tool particularly to get least chip radial distance during drilling i.e. 0.1145?mm.  相似文献   
723.
724.
Whereas cellulose‐derived polymers are routinely used as membrane materials, the cellulose polymer itself is not directly used to synthesize dense/porous films for membrane applications. Recently, N‐methylmorpholine N‐oxide (NMMO) and dimethylacetamide (DMAc)/lithium chloride (LiCl) have been successfully employed for dissolving unmodified cellulose. This provides a strong rationale for reexamining the possibility of cellulose membrane fabrication using these solvents. By judiciously selecting solvents, casting conditions, and solvent exchange steps, we successfully synthesized dense/asymmetric‐porous cellulose films. The pore size and porosity of the porous films decreased systematically with increasing cellulose concentration. SEM analysis of the cross sections revealed an asymmetric skinned structure with monotonically increasing pore size away from the skin. The measured pore diameters were in the range 1.8–4.8 μm. Mechanical testing indicated that the dense films possessed tensile properties comparable to those of cellulose acetate (CA) films. Though nitrogen permeability values were comparable for cellulose and CA dense films, cellulose film permeability depended upon the type of drying protocol employed. Overall, these results demonstrate that processability need not be a constraint in the use of cellulose polymer for membrane fabrication. In selected applications, cellulose membranes could become a cost‐effective, environmentally friendly alternative to other more commonly employed membrane polymers. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007  相似文献   
725.
Characterization and modeling of burr formation in micro-end milling   总被引:3,自引:0,他引:3  
Mechanical micromachining is increasingly finding applications in fabrication of components in various fields, such as, biomedical devices, optics, electronics, medicine, communications and avionics. In order to ensure adequate functionality, there are stringent requirements for form and finish in case of biomedical devices like cochlear implants and metallic optics. This necessitates that the post machined surface must be burr free. To address these issues in micromachining, this paper presents results of an experimental study to investigate the influence of main process parameters i.e. speed, feed rate, depth of cut, tool diameter and number of flutes on the formation of the various types of burrs i.e. exit burrs and top burrs produced during micro-end milling operation. The experiments performed using Taguchi method shows that three types of burr formation mechanisms prevail during micro-end milling operations; these are: lateral deformation of material, bending and tearing of the chip. Also, three types of burrs were observed include: Poisson burr, rollover burr in down milling and tear burr in up milling. Further, it is observed that the depth of cut and the tool diameter are the main parameters, which influence the burr height and thickness significantly. However, the speed and the feed rate have small to negligible effect on the burr thickness and height. Besides the experimental analysis, the paper presents an analytical model to predict the burr height for exit burr. The model is built on the geometry of burr formation and the principle of continuity of work at the transition from chip formation to burr formation. Note that prediction of burr height in micro-end milling is extremely challenging due to the complex geometry of material removal and microstructural effects encountered during cutting at that length scales. The model fares well and the prediction errors range between 0.65 and 25%.  相似文献   
726.
ABSTRACT

In this present paper, an experimental study is carried out on a single cylinder, four-stroke variable compression ratio (VCR), direct injection diesel engine to analyse the performance characteristics of 20% karanja oil (B20) with diethyl ether, methanol and ethanol as an additives by substituting 5% and 10%, respectively. The engine is operated at the speed of 1500 rpm with VCRs 17 and 18. Analysis of performance parameters such as brake power, indicated power, brake thermal efficiency, mechanical efficiency, specific fuel consumption and indicated thermal efficiency are arrived by the IC engine analysis software which has been coupled with the VCR engine. The outcome data of these blends are to be compared with the ordinary diesel. The results are optimised by using the design of experiments (DOE) method in MINITAB 17.0 software to find out the suitable blend for the engine.  相似文献   
727.
Rechargeable aqueous Zn/S batteries exhibit high capacity and energy density. However, the long-term battery performance is bottlenecked by the sulfur side reactions and serious Zn anode dendritic growth in the aqueous electrolyte medium. This work addresses the problem of sulfur side reactions and zinc dendrite growth simultaneously by developing a unique hybrid aqueous electrolyte using ethylene glycol as a co-solvent. The designed hybrid electrolyte enables the fabricated Zn/S battery to deliver an unprecedented capacity of 1435 mAh g−1 and an excellent energy density of 730 Wh kg−1 at 0.1 Ag−1. In addition, the battery exhibits capacity retention of 70% after 250 cycles even at 3 Ag−1. Moreover, the cathode charge–discharge mechanism studies demonstrate a multi-step conversion reaction. During discharge, the elemental sulfur is sequentially reduced by Zn to S2− ( S 8 S x 2 S 2 2 + S 2 ) ${{\rm{S}}_8}{\bm{ \to }}{\rm{S}}_{\rm{x}}^{2{\bm{ - }}}{\bm{ \to }}{\rm{S}}_2^{2{\bm{ - }}}{\bm{ + }}{{\rm{S}}^{2{\bm{ - }}}})$ , forming ZnS. On charging, the ZnS and short-chain polysulfides will oxidize back to elemental sulfur. This electrolyte design strategy and unique multi-step electrochemistry of the Zn/S system provide a new pathway in tackling both key issues of Zn dendritic growth and sulfur side reactions, and also in designing better Zn/S batteries in the future.  相似文献   
728.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号