首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24305篇
  免费   325篇
  国内免费   57篇
电工技术   323篇
综合类   25篇
化学工业   4956篇
金属工艺   880篇
机械仪表   1301篇
建筑科学   441篇
矿业工程   6篇
能源动力   891篇
轻工业   1900篇
水利工程   92篇
石油天然气   24篇
无线电   3864篇
一般工业技术   4965篇
冶金工业   2340篇
原子能技术   295篇
自动化技术   2384篇
  2024年   354篇
  2023年   331篇
  2022年   406篇
  2021年   732篇
  2020年   587篇
  2019年   596篇
  2018年   702篇
  2017年   661篇
  2016年   810篇
  2015年   607篇
  2014年   943篇
  2013年   1393篇
  2012年   1458篇
  2011年   1795篇
  2010年   1299篇
  2009年   1331篇
  2008年   1219篇
  2007年   937篇
  2006年   815篇
  2005年   709篇
  2004年   639篇
  2003年   588篇
  2002年   593篇
  2001年   518篇
  2000年   437篇
  1999年   445篇
  1998年   954篇
  1997年   574篇
  1996年   494篇
  1995年   293篇
  1994年   212篇
  1993年   205篇
  1992年   115篇
  1991年   106篇
  1990年   76篇
  1989年   92篇
  1988年   81篇
  1987年   67篇
  1986年   56篇
  1985年   53篇
  1984年   36篇
  1983年   28篇
  1982年   34篇
  1981年   29篇
  1980年   42篇
  1979年   13篇
  1977年   48篇
  1976年   97篇
  1975年   17篇
  1974年   13篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
991.
    
We have previously shown that a deficiency of CD1d-restricted invariant natural killer T (iNKT) cells exacerbates dextran sulfate sodium (DSS)-induced colitis in Yeti mice that exhibit IFNγ-mediated hyper-inflammation. Although iNKT cell-deficiency resulted in reduced Foxp3 expression by mesenteric lymph node (MLN) CD4+ T cells in DSS-treated Yeti mice, the cellular mechanisms that regulate Foxp3 expression by CD25+CD4+ T cells during intestinal inflammation remain unclear. We found that Foxp3CD25+CD4+ T cells expressing Th1 and Th17 phenotypic hallmarks preferentially expanded in the MLNs of DSS-treated Yeti/CD1d knockout (KO) mice. Moreover, adoptive transfer of Yeti iNKT cells into iNKT cell-deficient Jα18 KO mice effectively suppressed the expansion of MLN Foxp3CD25+CD4+ T cells during DSS-induced colitis. Interestingly, MLN dendritic cells (DCs) purified from DSS-treated Yeti/CD1d KO mice promoted the differentiation of naive CD4+ T cells into Foxp3CD25+CD4+ T cells rather than regulatory T (Treg) cells, indicating that MLN DCs might mediate Foxp3+CD25+CD4+ T cell expansion in iNKT cell-sufficient Yeti mice. Furthermore, we showed that Foxp3CD25+CD4+ T cells were pathogenic in DSS-treated Yeti/CD1d KO mice. Our result suggests that pro-inflammatory DCs and CD1d-restricted iNKT cells play opposing roles in Foxp3 expression by MLN CD25+CD4+ T cells during IFNγ-mediated intestinal inflammation, with potential therapeutic implications.  相似文献   
992.
    
Although tissue-type plasminogen activator was approved by the FDA for early reperfusion of occluded vessels, there is a need for an effective neuroprotective drug for stroke patients. In this study, we established tumor susceptibility gene (TSG)101-overexpressing human neural stem cells (F3.TSG) and investigated whether they showed enhanced secretion of exosomes and whether treatment with exosomes during reperfusion alleviated ischemia-reperfusion-mediated brain damage. F3.TSG cells secreted higher amounts of exosomes than the parental F3 cells. In N2A cells subjected to oxygen–glucose deprivation (OGD), treatment with exosomes or coculture with F3.TSG cells significantly attenuated lactate dehydrogenase release, the mRNA expression of proinflammatory factors, and the protein expression of DNA-damage-related proteins. In a middle cerebral artery occlusion (MCAO) rat model, treatment with exosomes, F3 cells, or F3.TSG cells after 2 h of occlusion followed by reperfusion reduced the infarction volume and suppressed inflammatory cytokines, DNA-damage-related proteins, and glial fibrillary acidic protein, and upregulated several neurotrophic factors. Thus, TSG101-overexpressing neural stem cells showed enhanced exosome secretion; exosome treatment protected against MCAO-induced brain damage via anti-inflammatory activities, DNA damage pathway inhibition, and growth/trophic factor induction. Therefore, exosomes and F3.TSG cells can affect neuroprotection and functional recovery in acute stroke patients.  相似文献   
993.
    
Chemoradiation-induced mucositis is a debilitating condition of the gastrointestinal tract eventuating from antineoplastic treatment. It is believed to occur primarily due to oxidative stress mechanisms, which generate Reactive Oxygen Species (ROS). The aim of this scoping review was to assess the role of oxidative stress in the development of Oral Mucositis (OM). Studies from the literature, published in MEDLINE and SCOPUS, that evaluated the oxidative stress pathways or antioxidant interventions for OM, were retrieved to elucidate the current understanding of their relationship. Studies failing inclusion criteria were excluded, and those suitable underwent data extraction, using a predefined data extraction table. Eighty-nine articles fulfilled criteria, and these were sub-stratified into models of study (in vitro, in vivo, or clinical) for evaluation. Thirty-five clinical studies evaluated antioxidant interventions on OM’s severity, duration, and pain, amongst other attributes. A number of clinical studies sought to elucidate the protective or therapeutic effects of compounds that had been pre-determined to have antioxidant properties, without directly assessing oxidative stress parameters (these were deemed “indirect evidence”). Forty-seven in vivo studies assessed the capacity of various compounds to prevent OM. Findings were mostly consistent, reporting reduced OM severity associated with a reduction in ROS, malondialdehyde (MDA), myeloperoxidase (MPO), but higher glutathione (GSH) and superoxide dismutase (SOD) activity or expression. Twenty-one in vitro studies assessed potential OM therapeutic interventions. The majority demonstrated successful a reduction in ROS, and in select studies, secondary molecules were assessed to identify the mechanism. In summary, this review highlighted numerous oxidative stress pathways involved in OM pathogenesis, which may inform the development of novel therapeutic targets.  相似文献   
994.
    
Processes that monitor the nucleation of amyloids and characterize the formation of amyloid fibrils are vital to medicine and pharmacology. In this study, we observe the nucleation and formation of lysozyme amyloid fibrils using a facile microfluidic system to generate nanoliter droplets that can control the flow rate and movement of monomer-in-oil emulsion droplets in a T-junction microchannel. Using a fluorescence assay, we monitor the nucleation and growth process of amyloids based on the volume of droplets. Using the microfluidic system, we demonstrate that the lag phase, which is vital to amyloid nucleation and growth, is reduced at a lower droplet volume. Furthermore, we report a peculiar phenomenon of high amyloid formation at the edge of a bullet-shaped droplet, which is likely due to the high local monomer concentration. Moreover, we discovered that amyloid fibrils synthesized in the nanoliter droplets are shorter and thicker than fibrils synthesized from a bulk solution via the conventional heating method. Herein, a facile procedure to observe and characterize the nucleation and growth of amyloid fibrils using nanoliter droplets is presented, which is beneficial for investigating new features of amyloid fibril formation as an unconventional synthetic method for amyloid fibrils.  相似文献   
995.
    
In this study, we tried to develop a FimH inhibitor that inhibits adhesion of enterohemorrhagic Escherichia coli (EHEC) on the epithelium of human intestine during the initial stage of infections. Using a T7 phage display method with a reference strain, EHEC EDL933, FimH was selected as an adherent lectin to GM1a and Gb3 glycans. In order to detect the ligand binding domain (LBD) of FimH, we used a docking simulation and found three binding site sequences of FimH, i.e., P1, P2, and P3. Among Gb3 mimic peptides, P2 was found to have the strongest binding strength. Moreover, in vitro treatment with peptide P2 inhibited binding activity in a concentration-dependent manner. Furthermore, we conducted confirmation experiments through several strains isolated from patients in Korea, EHEC NCCP15736, NCCP15737, and NCCP15739. In addition, we analyzed the evolutionary characteristics of the predicted FimH lectin-like adhesins to construct a lectin-glycan interaction (LGI). We selected 70 recently differentiated strains from the phylogenetic tree of 2240 strains with Shiga toxin in their genome. We can infer EHEC strains dynamically evolved but FimH was conserved during the evolution time according to the phylogenetic tree. Furthermore, FimH could be a reliable candidate of drug target in terms of evolution. We examined how pathogen lectins interact with host glycans early in infection in EDL933 as well as several field strains and confirmed that glycan-like peptides worked as an initial infection inhibitor.  相似文献   
996.
997.
    
Inflammasomes are a group of intracellular multiprotein platforms that play important roles in immune systems. Benzyl isothiocyanate (BITC) is a constituent of cruciferous plants and has been confirmed to exhibit various biological activities. The modulatory effects of BITC on inflammasome-mediated interleukin (IL)-1β expression and its regulatory mechanisms in Pseudomonas aeruginosa (P. aeruginosa) LPS/ATP-stimulated THP-1 cells was investigated. Monocytic THP-1 cells were treated with phorbol myristate acetate (PMA) to induce differentiation into macrophages. Enzyme-linked immunosorbent assays (ELISA) were performed to measure the levels of IL-1β produced in P. aeruginosa LPS/ATP-exposed THP-1 cells. Western blotting was performed to examine the BITC modulatory mechanisms in inflammasome-mediated signaling pathways. BITC inhibited IL-1β production in P. aeruginosa LPS/ATP-induced THP-1 cells. BITC also inhibited activation of leucine-rich repeat protein-3 (NLRP3) and caspase-1 in P. aeruginosa LPS/ATP-induced THP-1 cells. Furthermore, we show that mitogen-activated protein kinase (MAPK) and nuclear factor-κB (NF-κB) activation in P. aeruginosa LPS was attenuated by BITC. These BITC-mediated modulatory effects on IL-1β production may have therapeutic potential for inflammasome-mediated disorders such as a nasal polyp.  相似文献   
998.
    
Ovarian cancer is the fifth leading cause of cancer, followed by front line is mostly platinum agents and PARP inhibitors, and very limited option in later lines. Therefore, there is a need for alternative therapeutic options. Nectin-2, which is overexpressed in ovarian cancer, is a known immune checkpoint that deregulates immune cell function. In this study, we generated a novel anti-nectin-2 antibody (chimeric 12G1, c12G1), and further characterized it using epitope mapping, enzyme-linked immunosorbent assay, surface plasmon resonance, fluorescence-activated cell sorting, and internalization assays. The c12G1 antibody specifically bound to the C2 domain of human nectin-2 with high affinity (KD = 2.90 × 10−10 M), but not to mouse nectin-2. We then generated an antibody-drug conjugate comprising the c12G1 antibody conjugated to DM1 and investigated its cytotoxic effects against cancer cells in vitro and in vivo. c12G1-DM1 induced cell cycle arrest at the mitotic phase in nectin-2-positive ovarian cancer cells, but not in nectin-2-negative cancer cells. c12G1-DM1 induced ~100-fold cytotoxicity in ovarian cancer cells, with an IC50 in the range of 0.1 nM~7.4 nM, compared to normal IgG-DM1. In addition, c12G1-DM1 showed ~91% tumor growth inhibition in mouse xenograft models transplanted with OV-90 cells. These results suggest that c12G1-DM1 could be used as a potential therapeutic agent against nectin-2-positive ovarian cancers.  相似文献   
999.
    
Fear memory helps animals and humans avoid harm from certain stimuli and coordinate adaptive behavior. However, excessive consolidation of fear memory, caused by the dysfunction of cellular mechanisms and neural circuits in the brain, is responsible for post-traumatic stress disorder and anxiety-related disorders. Dysregulation of specific brain regions and neural circuits, particularly the hippocampus, amygdala, and medial prefrontal cortex, have been demonstrated in patients with these disorders. These regions are involved in learning, memory, consolidation, and extinction. These are also the brain regions where new neurons are generated and are crucial for memory formation and integration. Therefore, these three brain regions and neural circuits have contributed greatly to studies on neural plasticity and structural remodeling in patients with psychiatric disorders. In this review, we provide an understanding of fear memory and its underlying cellular mechanisms and describe how neural circuits are involved in fear memory. Additionally, we discuss therapeutic interventions for these disorders based on their proneurogenic efficacy and the neural circuits involved in fear memory.  相似文献   
1000.
    
The CRISPR/Cas9 site-directed gene-editing system offers great advantages for identifying gene function and crop improvement. The circadian clock measures and conveys day length information to control rhythmic hypocotyl growth in photoperiodic conditions, to achieve optimal fitness, but operates through largely unknown mechanisms. Here, we generated core circadian clock evening components, Brassica rapa PSEUDO-RESPONSE REGULATOR (BrPRR) 1a, 1b, and 1ab (both 1a and 1b double knockout) mutants, using CRISPR/Cas9 genome editing in Chinese cabbage, where 9–16 genetic edited lines of each mutant were obtained. The targeted deep sequencing showed that each mutant had 2–4 different mutation types at the target sites in the BrPRR1a and BrPRR1b genes. To identify the functions of BrPRR1a and 1b genes, hypocotyl length, and mRNA and protein levels of core circadian clock morning components, BrCCA1 (CIRCADIAN CLOCK-ASSOCIATED 1) and BrLHY (LATE ELONGATED HYPOCOTYL) a and b were examined under light/dark cycles and continuous light conditions. The BrPRR1a and 1ab double mutants showed longer hypocotyls, lower core circadian clock morning component mRNA and protein levels, and a shorter circadian rhythm than wildtype (WT). On the other hand, the BrPRR1b mutant was not significantly different from WT. These results suggested that two paralogous genes may not be associated with the same regulatory function in Chinese cabbage. Taken together, our results demonstrated that CRISPR/Cas9 is an efficient tool for achieving targeted genome modifications and elucidating the biological functions of circadian clock genes in B. rapa, for both breeding and improvement.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号