首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   864篇
  免费   23篇
  国内免费   4篇
电工技术   11篇
化学工业   172篇
金属工艺   22篇
机械仪表   27篇
建筑科学   13篇
能源动力   26篇
轻工业   86篇
水利工程   2篇
无线电   146篇
一般工业技术   180篇
冶金工业   75篇
自动化技术   131篇
  2024年   1篇
  2023年   2篇
  2022年   14篇
  2021年   15篇
  2020年   4篇
  2019年   8篇
  2018年   9篇
  2017年   15篇
  2016年   11篇
  2015年   11篇
  2014年   18篇
  2013年   69篇
  2012年   41篇
  2011年   36篇
  2010年   37篇
  2009年   43篇
  2008年   49篇
  2007年   62篇
  2006年   42篇
  2005年   31篇
  2004年   24篇
  2003年   34篇
  2002年   27篇
  2001年   18篇
  2000年   19篇
  1999年   21篇
  1998年   36篇
  1997年   29篇
  1996年   29篇
  1995年   19篇
  1994年   19篇
  1993年   14篇
  1992年   7篇
  1991年   7篇
  1990年   7篇
  1989年   8篇
  1988年   9篇
  1987年   7篇
  1986年   7篇
  1985年   7篇
  1984年   6篇
  1983年   2篇
  1982年   3篇
  1981年   1篇
  1980年   3篇
  1979年   2篇
  1977年   5篇
  1976年   3篇
排序方式: 共有891条查询结果,搜索用时 0 毫秒
851.
New design of a circular microstrip antenna with dual capacitively coupled feeds for broad-band circular polarization radiation is presented. The dual feeds are with a small top-loaded disk and are connected to a Wilkinson power divider with a 90° phase shift between its two output feedlines. The radiating circular patch, printed on a thin substrate, is supported by nonconducting posts on a conducting ground plane and is excited capacitively through the dual feeds. With a distance less than 10% times the center operating wavelength between the circular patch and the ground plane, the present proposed antenna can provide an impedance bandwidth (VSWR ⩽2) of about 49% and a 3-dB axial-ratio bandwidth of about 35%. The antenna gain bandwidth, defined to be within 1-dB gain variation in the axial-ratio bandwidth, is as large as 28%, with the antenna gain level at about 7.0 dBi  相似文献   
852.
GaN metal-semiconductor-metal (MSM) ultraviolet photodetectors with titanium tungsten (TiW) transparent electrodes were fabricated and characterized. It was found that the 10-nm-thick TiW film deposited with a 300-W RF power can still provide a reasonably high transmittance of 75.1% at 300 nm, a low resistivity of 1.7/spl times/10/sup -3/ /spl Omega//spl middot/cm and an effective Schottky barrier height of 0.773 eV on u-GaN. We also achieved a peak responsivity of 0.192 A/W and a quantum efficiency of 66.4% from the GaN ultraviolet MSM photodetector with TiW electrodes. With a 3-V applied bias, it was found that minimum noise equivalent power and maximum D/sup */ of our detector were 1.987/spl times/10/sup -10/ W and 6.365/spl times/10/sup 9/ cmHz/sup 0.5/W/sup -1/, respectively.  相似文献   
853.
High-quality SiO2 was successfully deposited onto GaN by photo-chemicalvapor deposition (photo-CVD) using a D2 lamp as the excitation source. The AlGaN/GaN metal-oxide semiconductor, heterostructure field-effect transistors (MOSHFETs) were also fabricated with photo-CVD oxide as the insulating layer. Compared with AlGaN/GaN metal-semiconductor HFETs (MESHFETs) with similar structure, we found that we could reduce the gate-leakage current by more than four orders of magnitude by inserting the photo-CVD oxide layer in between the AlGaN/GaN and the gate metal. With a 2-μm gate, it was found that the saturated Ids, maximum gm, and gate-voltage swing (GVS) of the fabricated nitride-based MOSHFET were 512 mA/mm, 90.7 mS/mm, and 6 V, respectively.  相似文献   
854.
AlGaN ultraviolet (UV) metal-semiconductor-metal (MSM) photodetectors (PDs) grown on silicon substrates were fabricated and characterized. With 5-V applied bias, it was found that dark current density of Al0.2Ga0.7N PDs on silicon substrate was only 7.5times10-9 A/cm2. With an applied bias of 7 V, it was found that peak responsivities were 0.09 and 0.11 A/W while UV/visible rejection ratios (i.e., peak wavelength: 420 nm) were 324 and 278 for Al0.2Ga0.8N and Al0.3 Ga0.7N MSM PDs, respectively. Moreover, the noise equivalent power of Al0.2Ga0.8N MSM PDs was estimated to be 3.5times10-12 W  相似文献   
855.
The finite field is widely used in error-correcting codes and cryptography. Among its important arithmetic operations, multiplication is identified as the most important and complicated. Therefore, a multiplier with concurrent error detection ability is elegantly needed. In this paper, a concurrent error detection scheme is presented for bit-parallel systolic dual basis multiplier over GF(2m) according to the Fenn’s multiplier in [7]. Although, the proposed method increases the space complexity overhead about 27% and the latency overhead about one extra clock cycle as compared to Fenn’s multiplier. Our analysis shows that all single stuck-at faults can be detected concurrently.  相似文献   
856.
The effects of variation in RF, such as I/Q imbalance and filter mismatch, are extremely important for OFDM wireless accesses. This work presents a low-computational estimation of I/Q imbalances with filter mismatches to improve performance in MIMO-OFDM receivers. For N × N MIMO-OFDM systems, the proposed cross-validation estimation is such that, only N + 1 preambles are required to extract the mismatches of filters, gains and phases. With the estimated parameters, frequency-domain filters are exploited to correct frequency-dependent I/Q imbalances. Through performance evaluation of a 2 × 2 MIMO-OFDM system, with ideal channel estimations this study incurs a SNR loss of 1–1.2 dB to maintain a 10% PER at 1-dB gain error, 10°-phase error and the worst 180°-filter mismatch. In addition, this algorithm is well-matched to IEEE 802.11n and new specifications discussed in IEEE 802.11 VHT study group.  相似文献   
857.
Two angular‐shaped 4,9‐didodecyl α‐aNDT and 4,9‐didodecyl β‐aNDT isomeric structures have been regiospecifically designed and synthesized. The distannylated α‐aNDT and β‐aNDT monomers are copolymerized with the Br‐DTNT monomer by the Stille coupling to furnish two isomeric copolymers, PαNDTDTNT and PβNDTDTNT, respectively. The geometric shape and coplanarity of the isomeric α‐aNDT and β‐aNDT segments in the polymers play a decisive role in determining their macroscopic device performance. Theoretical calculations show that PαNDTDTNT possesses more linear polymeric backbone and higher coplanarity than PβNDTDTNT. The less curved conjugated main chain facilitates stronger intermolecular π–π interactions, resulting in more redshifted absorption spectra of PαNDTDTNT in both solution and thin film compared to the PβNDTDTNT counterpart. 2D wide‐angle X‐ray diffraction analysis reveals that PαNDTDTNT has more ordered π‐stacking and lamellar stacking than PβNDTDTNT as a result of the lesser curvature of the PαNDTDTNT backbone. Consistently, PαNDTDTNT exhibits a greater field effect transistor hole mobility of 0.214 cm2 V?1 s?1 than PβNDTDTNT with a mobility of 0.038 cm2 V?1 s?1. More significantly, the solar cell device incorporating the PαNDTDTNT:PC71BM blend delivers a superior power conversion efficiency (PCE) of 8.01% that outperforms the PβNDTDTNT:PC71BM‐based device with a moderate PCE of 3.6%.  相似文献   
858.
Low-complexity finite field multiplier using irreducible trinomials   总被引:1,自引:0,他引:1  
Chiou  C.W. Lin  L.C. Chou  F.H. Shu  S.F. 《Electronics letters》2003,39(24):1709-1711
A low-complexity array multiplier for GF(2/sup m/) fields with an irreducible trinomial X/sup m/+X/sup n/+1 is presented. The space complexity of the proposed multiplier is reduced from order O(m/sup 2/) to O(m) compared with the Lee's array multiplier. The time complexity of the proposed multiplier is about half that of Lee's array multiplier.  相似文献   
859.
Small gate area with short gate length reduces the C-V distortion of ultrathin oxide devices, but results in high parasitic capacitance/total capacitance ratio. The floating well method can exclude the parasitic capacitance to obtain accurate inversion oxide thickness without using any dummy pattern. It is suitable for nano technology.  相似文献   
860.
Eliminating cryptographic computation errors is vital for preventing attacks. A simple approach is to verify the correctness of the cipher before outputting it. The multiplication is the most significant arithmetic operation among the cryptographic computations. Hence, a multiplier with concurrent error detection ability is urgently necessary to avert attacks. Employing the re-computing shifted operand concept, this study presents a semi-systolic array polynomial basis multiplier with concurrent error detection with minimal area overhead. Moreover, the proposed multiplier requires only two extra clock cycles while traditional multipliers using XOR trees consume at least extra XOR gate delays in GF(2m) fields. Chiou-Yng Lee received the Bachelor’s degree (1986) in medical engineering and the M.S. degree in electronic engineering (1992), both from the Chung Yuan university, Taiwan, and the Ph.D. degree in electrical engineering from Chang Gung University, Taiwan, in 2001. From 1988 to now, he was a research associate with Chunghwa Telecommunication Laboratory in Taiwan. He joined the department of project planning. He taught those related field courses at Ching-Yun Technology University. He is currently as an assistant professor of Department of Computer Information and Network Engineering in Lunghwa University of Science and Technology. His research interests include computations in finite fields, error-control coding, signal processing, and digital transmission system. Besides, he is a member of the IEEE and the IEEE Computer society. He is also an honor member of Phi Tao Phi in 2001. Che Wun Chiou received his B.S. degree in Electronic Engineering from Chung Yuan Christian University in 1982, the M.S. degree and the Ph.D. degree in Electrical Engineering from National Cheng Kung University in 1984 and 1989, respectively. From 1990 to 2000, he was with the Chung Shan Institute of Science and Technology in Taiwan. He joined the Department of Electronic Engineering and the Department of Computer Science and Information Engineering, Ching Yun University in 2000 and 2005, respectively. He is currently as Dean of Division of Continuing Education in Ching Yun University. His current research interests include fault-tolerant computing, computer arithmetic, parallel processing, and cryptography. Jim-Min Lin was born on March 5, 1963 in Taipei, Taiwan. He received the B.S. degree in Engineering Science and the M.S. and the Ph.D. degrees in Electrical Engineering, all from National Cheng Kung University, Tainan, Taiwan, in 1985, 1987, and 1992, respectively. Since February 1993, he has been an Associate Professor at the Department of Information Engineering and Computer Science, Feng Chia University, Taichung City, Taiwan. He is currently as Professor at the Department of Information Engineering and Computer Science, Feng Chia University. His research interests include Operating Systems, Software Integration/Reuse, Embedded Systems, Software Agent Technology, and Testable Design.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号