首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6696篇
  免费   609篇
  国内免费   23篇
电工技术   90篇
综合类   15篇
化学工业   1460篇
金属工艺   243篇
机械仪表   436篇
建筑科学   116篇
矿业工程   2篇
能源动力   276篇
轻工业   614篇
水利工程   14篇
石油天然气   2篇
无线电   1174篇
一般工业技术   1489篇
冶金工业   718篇
原子能技术   108篇
自动化技术   571篇
  2024年   13篇
  2023年   110篇
  2022年   151篇
  2021年   271篇
  2020年   207篇
  2019年   209篇
  2018年   272篇
  2017年   253篇
  2016年   309篇
  2015年   258篇
  2014年   332篇
  2013年   437篇
  2012年   451篇
  2011年   548篇
  2010年   414篇
  2009年   438篇
  2008年   326篇
  2007年   232篇
  2006年   234篇
  2005年   185篇
  2004年   177篇
  2003年   156篇
  2002年   141篇
  2001年   87篇
  2000年   88篇
  1999年   103篇
  1998年   286篇
  1997年   172篇
  1996年   133篇
  1995年   83篇
  1994年   59篇
  1993年   41篇
  1992年   25篇
  1991年   17篇
  1990年   21篇
  1989年   16篇
  1988年   15篇
  1987年   11篇
  1986年   7篇
  1985年   7篇
  1984年   3篇
  1983年   1篇
  1981年   4篇
  1980年   7篇
  1979年   1篇
  1977年   5篇
  1976年   10篇
  1975年   1篇
  1974年   1篇
排序方式: 共有7328条查询结果,搜索用时 31 毫秒
961.
A high‐voltage supercapacitor with shape memory for driving an integrated NO2 gas sensor is fabricated using a Norland Optical Adhesive 63 polymer substrate, which can recover the original shape after deformation by short‐time heating. The supercapacitor consists of multiwalled carbon nanotube electrodes and organic electrolyte. By using organic electrolyte consisting of adiponitrile, acetonitrile, and dimethyl carbonate in an optimized volume ratio of 1:1:1, a high operation voltage of 2 V is obtained. Furthermore, asymmetric electrolytes with different redox additives of hydroquinone and 1,4‐dihydroxyanthraquinone to the anode and cathode, respectively, enhance both capacitance and energy density by ≈40 times compared to those of supercapacitor without redox additives. The fabricated supercapacitor on the Norland Optical Adhesive 63 polymer substrate retains 95.8% of its initial capacitance after 1000 repetitive bending cycles at a bending radius of 3.8 mm. Furthermore, the folded supercapacitor recovers its shape upon heating at 70 °C for 20 s. In addition, 90% of the initial capacitance is retained even after the 20th shape recovery from folding. The fabricated supercapacitor is used to drive integrated NO2 gas sensor on the same Norland Optical Adhesive 63 substrate attached onto skin to detect NO2 gas, regardless of deformation due to elbow movement.  相似文献   
962.
The lack of cost effective, industrial‐scale production methods hinders the widespread applications of graphene materials. In spite of its applicability in the mass production of graphene flakes, arc discharge has not received considerable attention because of its inability to control the synthesis and heteroatom doping. In this study, a facile approach is proposed for improving doping efficiency in N‐doped graphene synthesis through arc discharge by utilizing anodic carbon fillers. Compared to the N‐doped graphene (1–1.5% N) synthesized via the arc process according to previous literature, the resulting graphene flakes show a remarkably increased doping level (≈3.5% N) with noticeable graphitic N enrichment, which is rarely achieved by the conventional process, while simultaneously retaining high turbostratic crystallinity. The electrolyte ion storage of synthesized materials is examined in which synthesized N‐doped graphene material exhibits a remarkable area normalized capacitance of 63 µF cm?2. The surprisingly high areal capacitance, which is superior to that of most carbon materials, is attributed to the synergistic effect of extrinsic pseudocapacitance, high crystallinity, and abundance of exposed graphene edges. These results highlight the great potentials of N‐doped graphene flakes produced by arc discharge in graphene‐based supercapacitors, along with well‐studied active exfoliated graphene and reduced graphene oxide.  相似文献   
963.
While microparticle (MP) assemblies have long attracted academic interest, few practical applications of assembled MPs have been achieved because of technological difficulties related to MP synthesis, MP position registration, and the absence of device concepts. The precise positioning of functional MPs in a proper stencil can produce flexible/stretchable electronic devices, even when the MPs themselves are rigid. In recent years, remarkable progress has been made in the programmable position registration of MPs, production of functional MPs, and concepts for MP‐based, pixel‐type electronic devices. This progress report reviews the recent technological advances in MP assembly and discusses the technological challenges preventing the realization of the one‐particle/one‐pixel concept.  相似文献   
964.
The demand to discover every single cellular component has been continuously increasing along with the development of biological techniques. The bottom‐up approach to construct a cell‐mimicking system from well‐defined and tunable compositions is accelerating, with the ultimate goal of comprehending a biological cell. From among the available techniques, the artificial cell has been increasingly recognized as one of the most powerful tools for building a cell‐like system from scratch. This review summarizes the development of artificial cells, from a pure giant unilamellar vesicle (GUV) to a controllable, self‐fueled proteoliposome, both of which are highly compartmentalized. The basic components of an artificial cell, as well as the optimal conditions required for successful, reproducible GUV formation and protein reconstitution, are discussed. Most importantly, progress in studying the metabolic reactions in and the motility of a reconstituted artificial cell are the main focus of the review. The ability to perform a complicated reaction cascade in a controllable manner is highlighted as a promising perspective to obtaining an autonomous and movable GUV.  相似文献   
965.
Precise control of the topology of metal nanocrystals and appropriate modulation of the metal–semiconductor heterostructure is an important way to understand the relationship between structure and material properties for plasmon‐induced solar‐to‐chemical energy conversion. Here, a bottom‐up wet chemical approach to synthesize Au/Ni2P heterostructures via Pt‐catalyzed quasi‐epitaxial overgrowth of Ni on Au nanorods (NR) is presented. The structural motif of the Ni2P is controlled using the aspect ratio of the Au NR and the effective micelle concentration of the C16TAB capping agent. Highly ordered Au/Pt/Ni2P nanostructures are employed as the photoelectrocatalytic anode system for water splitting. Electrochemical and ultrafast absorption spectroscopy characterization indicates that the structural motif of the Ni2P (controlled by the outer‐shell deposition of Ni) helps to manipulate hot electron transfer during surface plasmon decay. With optimized Ni2P thickness, Pt‐tipped Au NR with an aspect ratio of 5.2 exhibits a geometric current density of 10 mA cm?2 with an overpotential of 140 mV. The photoanode displays unprecedented long‐term stability with continuous chronoamperometric performance of 50 h at an input potential of 1.5 V with over 30 days. This work provides definitive guidance for designing plasmonic–catalytic nanomaterials for enhanced solar‐to‐chemical energy conversion.  相似文献   
966.
Systems that are capable of robustly reproducing single‐molecule junctions are an essential prerequisite for enabling the wide‐spread testing of molecular electronic properties, the eventual application of molecular electronic devices, and the development of single‐molecule based electrical and optical diagnostics. Here, a new approach is proposed for achieving a reliable single‐molecule break junction system by using a microelectromechanical system device on a chip. It is demonstrated that the platform can (i) provide subnanometer mechanical resolution over a wide temperature range (≈77–300 K), (ii) provide mechanical stability on par with scanning tunneling microscopy and mechanically controllable break junction systems, and (iii) operate in a variety of environmental conditions. Given these fundamental device performance properties, the electrical characteristics of two standard molecules (hexane‐dithiol and biphenyl‐dithiol) at the single‐molecule level, and their stability in the junction at both room and cryogenic temperatures (≈77 K) are studied. One of the possible distinctive applications of the system is demonstrated, i.e., observing real‐time Raman scattering in a single‐molecule junction. This approach may pave a way to achieving high‐throughput electrical characterization of single‐molecule devices and provide a reliable platform for the convenient characterization and practical application of single‐molecule electronic systems in the future.  相似文献   
967.
The challenges of textiles that can generate and store energy simultaneously for wearable devices are to fabricate yarns that generate electrical energy when stretched, yarns that store this electrical energy, and textile geometries that facilitate these functions. To address these challenges, this research incorporates highly stretchable electrochemical yarn harvesters, where available mechanical strains are large and electrochemical energy storing yarns are achieved by weaving. The solid‐state yarn harvester provides a peak power of 5.3 W kg?1 for carbon nanotubes. The solid‐state yarn supercapacitor provides stable performance when dynamically deformed by bending and stretching, for example. A textile configuration that consists of harvesters, supercapacitors, and a Schottky diode is produced and stores as much electrical energy as is needed by a serial or parallel connection of the harvesters or supercapacitors. This textile can be applied as a power source for health care devices or other wearable devices and be self‐powered sensors for detecting human motion.  相似文献   
968.
Ultrasmall Co9S8 nanoparticles are introduced on the basal plane of MoS2 to fabricate a covalent 0D–2D heterostructure that enhances the hydrogen evolution reaction (HER) activity of electrochemical water splitting. In the heterostructure, separate phases of Co9S8 and MoS2 are formed, but they are connected by Co–S–Mo type covalent bonds. The charge redistribution from Co to Mo occurring at the interface enhances the electron‐doped characteristics of MoS2 to generate electron‐rich Mo atoms. Besides, reductive annealing during the synthesis forms S defects that activates adjacent Mo atoms for further enhanced HER activity as elucidated by the density functional theory (DFT) calculation. Eventually, the covalent Co9S8–MoS2 heterostructure shows amplified HER activity as well as stability in all pH electrolytes. The synergistic effect is pronounced when the heterostructure is coupled with a porous Ni foam (NF) support to form Co9S8–MoS2/NF that displays superior performance to those of the state‐of‐the‐art non‐noble metal electrocatalysts, and even outperforms a commercial Pt/C catalyst in a practically meaningful, high current density region in alkaline (>170 mA cm?2) and neutral (>60 mA cm?2) media. The high HER performance and stability of Co9S8–MoS2 heterostructure make it a promising pH universal alternative to expensive Pt‐based electrocatalysts for practical water electrolyzers.  相似文献   
969.
970.
In this article, we demonstrate the liquid crystal (LC) alignment characteristics of solution‐derived nickel oxide (NiO) film modified with ion‐beam (IB) irradiation. Cross‐polarized optical microscopy and pretilt angle measurements verified that uniform LC alignment was achieved using the NiO film as an alignment layer regardless of IB incidence angle. Contact angle measurements revealed that all of the NiO films had a deionized water contact angle below 90°, which indicates that they had hydrophilic surfaces that had an effect on the homogeneous LC alignment. Atomic force microscopy was conducted to determine the physical surface modification due to the IB irradiation, which showed that it reduced the size of the surface grains with agglomerations depending on the surface tilt from the IB incidence angle. Furthermore, microgroove structures strongly related to uniform LC alignment were observed after IB irradiation. Chemical surface modification was investigated via an X‐ray photoelectron spectroscopy analysis which revealed that IB irradiation modified the chemical bonds in the NiO film, and this affected the LC alignment state. Thus, these results indicate that using NiO film exposed to IB irradiation as an alignment layer is a suitable method for LC applications.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号