首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   676篇
  免费   51篇
  国内免费   1篇
电工技术   7篇
综合类   1篇
化学工业   255篇
金属工艺   50篇
机械仪表   26篇
建筑科学   16篇
能源动力   52篇
轻工业   69篇
水利工程   7篇
石油天然气   3篇
无线电   37篇
一般工业技术   113篇
冶金工业   27篇
原子能技术   3篇
自动化技术   62篇
  2024年   1篇
  2023年   12篇
  2022年   31篇
  2021年   42篇
  2020年   26篇
  2019年   31篇
  2018年   32篇
  2017年   42篇
  2016年   37篇
  2015年   23篇
  2014年   20篇
  2013年   59篇
  2012年   34篇
  2011年   51篇
  2010年   32篇
  2009年   37篇
  2008年   39篇
  2007年   32篇
  2006年   23篇
  2005年   16篇
  2004年   10篇
  2003年   4篇
  2002年   11篇
  2001年   6篇
  2000年   1篇
  1999年   8篇
  1998年   12篇
  1997年   7篇
  1996年   8篇
  1995年   6篇
  1994年   8篇
  1993年   3篇
  1992年   8篇
  1991年   1篇
  1990年   1篇
  1989年   5篇
  1988年   2篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
  1980年   1篇
  1978年   3篇
排序方式: 共有728条查询结果,搜索用时 9 毫秒
181.
The development of synthetic processes for oxide nanomaterials is an issue of considerable topical interest. While a number of chemical methods are available and are extensively used, the collaborations are often energy intensive and employ toxic chemicals. On the other hand, the synthesis of inorganic materials by biological systems is characterized by processes that occur at close to ambient temperatures and pressures, and at neutral pH (examples include magnetotactic bacteria, diatoms, and S-layer bacteria). Here we show that nanoparticulate magnetite may be produced at room temperature extracellularly by challenging the fungi, Fusarium oxysporum and Verticillium sp., with mixtures of ferric and ferrous salts. Extracellular hydrolysis of the anionic iron complexes by cationic proteins secreted by the fungi results in the room-temperature synthesis of crystalline magnetite particles that exhibit a signature of a ferrimagnetic transition with a negligible amount of spontaneous magnetization at low temperature.  相似文献   
182.
The aim of this study was to demonstrate hydrogen donating capability of poly(ethylene oxide) (PEO) in type II photoinitiated free radical polymerization for dental applications. Photopolymerization kinetics of the dental resin mixtures were monitored by Photo-DSC. H-NMR spectroscopic and GPC studies were also performed in order to gain insight to the hydrogen abstraction mechanism. The effect of molecular weight of PEO on the photoinitiation efficiency was investigated. Photolysis of solutions containing benzophenone and PEO in the presence of a radical scavenger namely, 2,2,6,6-tetramethylpiperidine-N-oxyl free radical (TEMPO) revealed that photoexcited benzophenone readily abstracts hydrogen from methylene groups present in PEO backbone. It was demonstrated that such photoinitiating system can be converted to a versatile grafting process. PEO possessing photochemically attached TEMPO units initiates the nitroxide mediated radical polymerization of styrene upon heating at 110 °C leading to the formation of poly(ethylene oxide-g-styrene) graft copolymer. Potential use of the photoinitiating system in dental formulations was also demonstrated. The polymeric nature, water solubility and nontoxicity make PEO a promising candidate as hydrogen donor in dental formulations.  相似文献   
183.
Glass-ceramics with a nominal composition of 25SiO2–(50 − x)CaO–15P2O5–8Fe2O3–2ZnO–xAg (where x = 0, 2 and 4 mol%) have been prepared. Structural features of glass-ceramics have been investigated using X-ray diffraction (XRD) and scanning electron microscope (SEM) techniques. Magnetic properties were studied using vibrating sample magnetometer and Mössbauer spectroscopy. Ca3(PO4)2, hematite and magnetite are formed as major crystalline phases. The microstructure reveals the formation of 25–30 nm size particles. Mössbauer spectroscopy has shown the relaxation of magnetic particles. Saturation magnetization value is increased with an increase of Ag content up to 4 mol%, which has been attributed to the formation of magnetically ordered particles. The antibacterial response was found to depend on Ag ions concentration in the glass matrix and samples with 4 mol% Ag in glass matrix have shown effective antibacterial activity against Escherichia coli.  相似文献   
184.
185.
The aim of this study was to investigate the incidence of Arcobacter species in water sources and raw milk from healthy animals in Kayseri, Turkey. A total of 175 samples of drinking water (n = 100), spring water (n = 25), and raw milk (n = 50) were examined. Arcobacter species were isolated using the membrane filtration technique. Overall, 7 (4%) of the 175 samples yielded Arcobacter spp.: 3 (3%) drinking water samples, 1 (4%) spring water sample, and 3 (6%) raw milk samples. Two species of Arcobacter were recovered from the seven positive samples: Arcobacter butzleri, Arcobacter skirrowii, and A. butzleri plus A. skirrowii found in 3 (1.7%), 2 (1.1%), and 2 (1.1%) samples, respectively. Our study is the first to report the isolation of both A. butzleri and A. skirrowii together from drinking water and is the first report of Arcobacter in milk from healthy cows in Turkey. Based on these findings, the presence of Arcobacter species in environmental waters and raw milk may pose a potential hazard for human health.  相似文献   
186.
Living polytetrahydrofuran (PTHF) was terminated with sodium thiophene methonate to yield a polymer with a thiophene group at one end. Copolymerizations of PTHF with pyrrole and thiophene were achieved in water‐p‐toluene sulfonic acid and acetonitrile‐tetrabutylammonium tetrafluoroborate (TBAFB) solvent‐electrolyte couples via constant potential electrolyses. Characterizations of the samples were performed by NMR, cyclic voltammetry, FT‐IR, thermal analyses, and scanning electron microscopy. Electrical conductivities were measured by the four‐probe technique. PTHF/PTh film that was deposited on ITO‐glass in a dichloromethane‐TBAFB solvent‐electrolyte couple was found to exhibit electrochromic behavior and it electrochemically switches between blue oxidized and red reduced states. Optical analyses were carried out to investigate the electronic structure of PTHF/PTh electrochromic copolymer. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 95: 1014–1023, 2005  相似文献   
187.
Thermal properties of soils are of great importance in view of the modern trends of utilizing the subsurface for transmission of either heated fluids or high power currents. For these situations, it is essential to estimate the resistance offered by the soil mass in dissipating the heat generated through it. Several investigators have tried to develop mathematical and theoretical models to estimate soil thermal resistivity. However, it is evident that these models are not efficient enough to predict accurate thermal resistivity of soils. This is mainly due to the fact that thermal resistivity of soils is a complex phenomenon that depends upon various parameters viz., type of the soil, particle size distribution and its compaction characteristics (i.e., dry density and moisture content). To overcome this, Artificial Neural Network (ANN) models, which are based on experimentally obtained thermal resistivity values for clay, silt, silty-sand, fine- and coarse-sands, have been developed. Incidentally, these soils are the most commonly encountered soils in nature and exhibit entirely different characteristics. The thermal resistivity of these soils, corresponding to their different compaction states, was obtained with the help of a laboratory thermal probe and compared vis-à-vis those obtained from the ANN model. The thermal resistivity of these soils obtained from ANN models and experimental investigations are found to match extremely well. The performance indices such as coefficient of determination, root mean square error, mean absolute error, and variance account for were used to control the performance of the prediction capacity of the models developed in this study. In addition to this, thermal resistivity of these soils obtained from ANN models were compared with those computed from the empirical relationships reported in the literature and were found to be superior. The study demonstrates the utility and efficiency of the ANN model for estimating thermal resistivity of soils.  相似文献   
188.
In this study, invertase was immobilized in copolymer electrodes constructed. Three different types of polymethyl methacrylate‐co‐polymethyl thienyl methacrylate matrices were used to obtain copolymers that were characterized by FT‐IR spectroscopy. Immobilization of enzymes was carried out by the entrapment of the enzyme in conducting polymer matrices during electrochemical polymerization of pyrrole through thiophene moieties of polymers. Immobilization of the enzyme was achieved by application of 1.0 V constant potential on a platinum electrode for 30 min in solution. The effects of temperature and pH on the activity of the enzyme electrodes were examined and operational stability studies were done. The changes in the maximum reaction rate and the variations in the Michaelis–Menten constant were studied. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 96: 502–507, 2005  相似文献   
189.
Alloys of Fe-Si-B with varying compositions of Mn were prepared using high energy planetary ball mill for maximum duration of 120 h. X-ray diffraction (XRD) analysis suggests that Si gets mostly dissolved into Fe after 80 h of milling for all compositions. The residual Si was found to form an intermetallic Fe3Si. The dissolution was further confirmed from the field emission scanning electron microscopy/energy dispersive X-ray analysis (FE-SEM/EDX). With increased milling time, the lattice parameter and lattice strain are found to increase. However, the crystallite size decreases from micrometer (75–95 μm) to nanometer (10–20 nm). Mössbauer spectra analysis suggests the presence of essentially ferromagnetic phases with small percentage of super paramagnetic phase in the system. The saturation magnetization (M s), remanance (M r) and coercivity (H c) values for Fe-0Mn sample after 120 h of milling were 96.4 Am2/kg, 11.5 Am2/kg and 12.42 k Am?1, respectively. However, for Fe-10Mn-5Cu sample the M s, H c and M r values were found to be 101.9 Am2/kg, 10.98 kA/m and 12.4 Am2/kg, respectively. The higher value of magnetization could be attributed to the favourable coupling between Mn and Cu.  相似文献   
190.
In this paper, the impact of the wire grid size on the power-delay-area tradeoff of VLSI digital circuits with differential routing is analyzed. To this aim, the differential MOS current-mode logic (MCML) is adopted as reference logic style, and a complete differential design flow is used. Analysis shows that the choice of the grid size in differential routing has a much stronger impact on the power-delay-area tradeoff, compared to the usual single-ended case. Hence, the grid size is an important knob that must be carefully selected when differential routing is adopted. The dependence of power, delay and area on the grid size is discussed in detail through simple models, and introducing appropriate metrics. To validate the analysis and show basic dependencies in practical circuits, 30 benchmark circuits with an in-house designed MCML cell library were synthesized and routed in 0.18 μm CMOS technology. Results show that non-optimal choice of the grid size can determine a dramatic increase in power (1.7×) and area (1.3×). Interestingly, the grid size that optimizes the power-delay-area tradeoff is almost independent of the specific circuit under design; hence a generally optimum grid size exists that optimizes a very wide range of different circuits.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号