排序方式: 共有22条查询结果,搜索用时 0 毫秒
11.
采用静态平衡法测定了常压下在273.15~343.15 K时甲基膦酸二甲庚酯(DMHMP)在水和不同浓度硝酸溶液中的溶解度。实验数据表明:DMHMP在常压298.15 K条件下于水中的溶解度δ(DMHMP)=166.69 mg/L;随着温度升高,DMHMP在水中的溶解度δ逐渐增加,符合Apelblat溶解度模型;用正十二烷稀释DMHMP可以降低其在水相中的溶解度;随着硝酸浓度的增加,DMHMP在硝酸中的溶解度也随之增加。 相似文献
12.
用分光光度法研究了HNO3介质中二甲基羟胺(DMHAN)还原Np(Ⅵ)的动力学。通过考察还原剂浓度和酸度等条件对Np(Ⅵ)动力学过程的影响,确定了反应的动力学速率方程为-dc(Np(Ⅵ))/dt=kc(Np(Ⅵ))c(DMHAN)/c0.6(H+),在温度θ=25℃、离子强度I=4.0 mol/kg时,速率常数k=289.8(mol/L)-0.4/min。研究了离子强度c、(U(Ⅵ))和温度等因素对反应的影响。结果表明,离子强度和c(U(Ⅵ))对反应速率无显著影响,25℃时反应活化能为53.3 kJ/mol;随着温度的升高,反应速率加快。并在此基础上推测了可能的反应机理。 相似文献
13.
采用静态平衡法测定了常压下在273.15~343.15 K时甲基膦酸二甲庚酯(DMHMP)在水和不同浓度硝酸溶液中的溶解度。实验数据表明:DMHMP在常压298.15 K条件下于水中的溶解度δ(DMHMP)=166.69 mg/L;随着温度升高,DMHMP在水中的溶解度δ逐渐增加,符合Apelblat溶解度模型;用正十二烷稀释DMHMP可以降低其在水相中的溶解度;随着硝酸浓度的增加,DMHMP在硝酸中的溶解度也随之增加。 相似文献
14.
采用循环伏安法研究了硝酸介质中甲基肼在铂电极上的电化学行为,结果表明,甲基肼在铂电极上的氧化反应为不可逆反应,其电子转移系数α为0.53,扩散系数D为8.75×10-6cm2/s,甲基肼的平衡电位为0.31 V. 相似文献
15.
16.
根据单级实验结果,选定0.02mol/L DPTP/30%辛醇-正十二烷(ODOD)体系,从1.0mol/L HNO3中分离Am^3+和Eu^3+经4级错流萃取,Am总萃取率为91.04%,有机相中仍含有2.93%的Eu。错流萃取的实验结果表明,该体系对Am的收率不是很高。 相似文献
17.
为了解2,6-双(5,6-二异丙基-1,2,4-三唑-3)吡啶(iPr-BTP)在硝酸介质中对镅和铕的萃取行为,以30%辛醇/正十二烷溶液为稀释剂,考察了稀释剂的组成、萃取时间、硝酸浓度、萃取剂浓度及硝酸钠浓度对iPr-BTP萃取Am(Ⅲ)和Eu(Ⅲ)的影响,确定了萃合物组成和萃取反应方程式。实验结果表明,该萃取剂对镅的萃取能力较强,而对铕的萃取能力较弱。iPr-BTP对Am(Ⅲ)和Eu(Ⅲ)的萃取反应方程式可表示为: M3++3NO-3+3(iPr-BTP)(o)→M(NO3)3·3(iPr-BTP)(o)。 相似文献
18.
19.
选定2,6-二-(5,6-二正丙基-1,2,4-三嗪-3-取代)-吡啶(DPTP)萃取体系,以Am和Eu作为三价锕系与镧系元素的代表,实验考察平衡时间、萃取剂浓度、水相酸度等对Am与Eu萃取分配比的影响。在此基础上,提出了DPTP萃取锕系和镧系的概念流程,并用串级实验进行了验证。实验结果表明:经6级萃取、2级洗涤、6级反萃,Am的收率为98.42%,Eu的萃取率小于0.1%;有机相中Am、Eu的反萃率均大于99.9%;分离因子SFAm/Eu=45,SFEu/Am>103。 相似文献
20.
乏燃料后处理Purex流程中的铀钚共去污工艺(1A)是整个化学分离过程的关键环节之一,该工艺计算机模拟计算对1A进行流程优化和安全分析具有重要意义。 相似文献