首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   715篇
  免费   40篇
电工技术   18篇
化学工业   270篇
金属工艺   6篇
机械仪表   14篇
建筑科学   11篇
矿业工程   2篇
能源动力   24篇
轻工业   78篇
水利工程   3篇
石油天然气   1篇
无线电   41篇
一般工业技术   170篇
冶金工业   7篇
原子能技术   13篇
自动化技术   97篇
  2023年   13篇
  2022年   30篇
  2021年   23篇
  2020年   11篇
  2019年   17篇
  2018年   22篇
  2017年   18篇
  2016年   23篇
  2015年   23篇
  2014年   23篇
  2013年   32篇
  2012年   63篇
  2011年   49篇
  2010年   36篇
  2009年   45篇
  2008年   45篇
  2007年   41篇
  2006年   33篇
  2005年   20篇
  2004年   17篇
  2003年   18篇
  2002年   16篇
  2001年   12篇
  2000年   9篇
  1999年   7篇
  1998年   5篇
  1997年   7篇
  1996年   8篇
  1995年   8篇
  1994年   5篇
  1993年   5篇
  1992年   3篇
  1991年   3篇
  1989年   7篇
  1988年   2篇
  1986年   4篇
  1985年   7篇
  1984年   3篇
  1983年   4篇
  1982年   8篇
  1981年   6篇
  1980年   3篇
  1979年   3篇
  1978年   2篇
  1977年   3篇
  1974年   3篇
  1971年   1篇
  1968年   1篇
  1964年   1篇
  1955年   1篇
排序方式: 共有755条查询结果,搜索用时 15 毫秒
131.
This work describes the preparation and characterization of composite materials obtained by the combination of natural rubber (NR) and carbon black (CB) in different percentages, aiming to improve their mechanical properties, processability, and electrical conductivity, aiming future applications as transducer in pressure sensors. The composites NR/CB were characterized through optical microscopy (OM), DC conductivity, thermal analysis using differential scanning calorimetry (DSC), dynamic mechanical thermal analysis (DMA), thermogravimetry (TGA), and stress–strain test. The electrical conductivity varied between 10?9 and 10 S m?1, depending on the percentage of CB in the composite. Furthermore, a linear (and reversible) dependence of the conductivity on the applied pressure between 0 and 1.6 MPa was observed for the sample with containing 80 wt % of NR and 20% of CB. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007  相似文献   
132.
A novel glass–ceramic material was developed from the melt of a TiO2-containing iron-making slag with additional waste glass. The high percentage (∼20 wt% TiO2) of this network-modifying oxide has promoted a crystallization of the parent glass, resulting in a fine-grained, homogeneous polycrystalline material with high mechanical properties ( E =120 GPa, flexural strength=∼180 MPa, and Vickers hardness=7 GPa) after a heat treatment at 1100°C for 2 h. The room temperature and elevated temperature fracture toughness were also studied. The main crystalline phases of the glass–ceramic material were of the pyroxene series until heat-treatment temperature reached 1000°C, at which titanium-rich perovskite and armalcolite crystals became the dominant phases. The end material is high-strength, aesthetically acceptable (metallic gray or opaque brown colored), and suitable for structural and architectural applications.  相似文献   
133.
Electrophoretic deposition of carbon nanotubes   总被引:1,自引:0,他引:1  
Electrophoretic deposition (EPD) has been gaining increasing interest as an economical and versatile processing technique for the production of novel coatings or films of carbon nanotubes (CNTs) on conductive substrates. The purpose of the paper is to present an up-to-date comprehensive overview of current research progress in the field of EPD of CNTs. The paper specifically reviews the preparation and characterisation of stable CNT suspensions, and the mechanism of the EPD process; it includes discussion of pure CNT coatings and CNT/nanoparticle composite films. A complete discussion of the EPD parameters is presented, including electrode materials, deposition time, electrode separation, deposition voltage and resultant electric field. The paper highlights potential applications of the resulting CNT and CNT/composite structures, in areas such as field emission devices, fuel cells, and supercapacitors.  相似文献   
134.
Summary: Organic‐inorganic nanocomposite hybrid coatings were prepared through a dual‐cure process involving cationic photopolymerization of a hyperbranched epoxy functionalized resin and subsequent condensation of an alkoxysilane inorganic precursor. All the formulations investigated gave rise to photocured films characterized by high gel content values. An increase in glass transition temperature and an increase in storage modulus above Tg in the rubbery plateau is observed with increasing TEOS content in the photocurable formulation. The important role of GPTS on reducing the inorganic domain size and avoiding macroscopic phase separation was demonstrated by TEM analyses.

TEM obtained for one of the cured films in the presence of GPTS.  相似文献   

135.
136.
137.
138.
Novel poly(3‐hydroxyoctanoate), P(3HO), and bacterial cellulose composites have been developed. P(3HO) is hydrophobic in nature whereas bacterial cellulose is extremely hydrophilic in nature. Therefore, homogenized bacterial cellulose has been chemically modified in order to achieve compatibility with the P(3HO) matrix. Modified bacterial cellulose microcrystals and P(3HO) have been physically blended and solvent casted into two‐dimensional composite films. Mechanical characterization shows that the Young's modulus of the P(3HO)/bacterial cellulose composites is significantly higher in comparison to the neat P(3HO) film. The melting temperature (Tm) of the composites is lower while the glass transition temperature (Tg) is higher than the neat P(3HO) film. Also, the composite film has a rougher surface topography as compared to the neat P(3HO) film. A month's in vitro degradation study has been carried out in Dulbeccos modified eagle medium and in phosphate buffer saline. The incorporation of modified bacterial cellulose microcrystal in the P(3HO) film has increased the degradability of the composite film. Finally, in vitro biocompatibility studies using human microvascular endothelial cells established the biocompatibility of the P(3HO)/bacterial cellulose microcrystal films. The cell proliferation was 50–110% higher on the P(3HO)/bacterial cellulose composites as compared to the neat P(3HO) film. Hence, in this study, for the first time, P(3HO)/bacterial cellulose composites have been developed. The addition of bacterial cellulose has resulted in properties that are highly desirable for medical applications including the development of biodegradable stents.  相似文献   
139.
Polyvinylpyrollidone (PVP)-capped platinum nanoparticles (NPs) are found to change shape from spherical to flat when deposited on mesoporous silica substrates (SBA-15). Transmission electron microscopy (TEM), small-angle X-ray scattering (SAXS), and extended X-ray absorption fine structure (EXAFS) analyses are used in these studies. The SAXS results indicate that, after deposition, the 2 nm NPs have an average gyration radius 22% larger than in solution, while the EXAFS measurements indicate a decrease in first neighbor co-ordination number from 9.3 to 7.4. The deformation of these small capped NPs is attributed to interactions with the surface of the SBA-15 support, as evidenced by X-ray absorption near-edge structure (XANES).  相似文献   
140.
The thermal performances of nanocomposite layers formed by Single-walled Carbon Nanotubes (SWCNT) dispersed in 2 different kind of polydimethyl-siloxane (PDMSO) matrices has been investigated by measuring the thermal resistance under conditions similar to the ones used for thermal management in microelectronics. A series of nanocomposite samples with thickness in the range 25 microm(-1) cm have been tested. The nanocomposites were prepared varying the amounts of nanotubes embedded in the matrix (from 0.1 to 5%w). In some cases also microsized graphites were mixed to the nanotube's fillers. For 25 micron thick layers, the thermal resistance of the neat silicone specimen can be reduced of 54% with the addition of 2%w carbon nanotubes. The variation of thermal conductivity as a function of the SWCNT's loading is reported and discussed. Furthermore the dispersion's effects of the nanotubes in the layers and the effects on the realization of a net-like system have been investigated.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号