In this paper, a multi-carrier code division multiple access (MC-CDMA) downlink mobile communication system employing pre-rake and dual transmit diversity is proposed. It combines high spectral efficiency with an immunity to channel dispersion and fading. It also ensures small size, cost and power consumption of the terminal. Theoretical and simulation results for the system under consideration are obtained. Depicted results show appreciable improvements of the proposed system over those previously known.Emad K. Al-Hussaini received his B.Sc degree in Electrical Communication Engineering from Ain-Shams University, Cairo, Egypt, in 1964 and his M.Sc and Ph.D. degrees from Cairo University, Giza, Egypt, in 1974 and 1977, respectively. From 1964 to 1970, he was with the General Egyptian Aeroorganization. Since 1970, he has been with the Department of Electronics and Communications, Faculty of Engineering, Cairo University, and is currently professor there. He was a research fellow at Imperial College, London, UK, and at the Moore School of Electrical Engineering, University of Pennsylvania, Philadelphia, PA, USA, in the academic years 1976/1977 and 1981/1982, respectively. In 1990, he received the Egyptian national encouragement award for outstanding engineering research. He has written several papers for technical international journals and conferences. His research interests include signal processing, fading channel communication, modulation, and cellular mobile radio systems. Dr Al-Hussaini is a senior member of IEEE. He is listed in Marquis Whos Who in the World and in the IBC (International Biographical Center, Cambridge) for outstanding people of the 20th century.Hebat-Allah M.Mourad received her B.Sc, M.Sc and Ph.D degrees in Electrical Communication Engineering from Cairo University, Egypt, in 1983, 1987 and 1994 respectively. Since 1983 she has been with the Electronics and Communications Department, Faculty of Engineering Cairo University and is currently associate professor there. Her research interests include mobile communications, satellite communications and optical fiber communications.Fatma A. Newagy received her B.Sc and M.Sc degrees in electrical communication engineering from Cairo University, Egypt in 1998 and 2002 respectively. Since 1999, she has been a research assistant with the Department of Electronics and Communications, Faculty of Engineering, Cairo University. She is pursuing her Ph.D. there. Her research interests include mobile communications and modulation techniques for spread spectrum and wireless communications. 相似文献
This paper is concerned with Electroencephalography (EEG) seizure prediction, which means the detection of the pre-ictal state prior to ictal activity occurrence. The basic idea of the proposed approach for EEG seizure prediction is to work on the signals in the Hilbert domain. The operation in the Hilbert domain guarantees working on the low-pass spectra of EEG signal segments to avoid artifacts. Signal attributes in the Hilbert domain including amplitude, derivative, local mean, local variance, and median are analyzed statistically to perform the channel selection and seizure prediction tasks. Pre-defined prediction and false-alarm probabilities are set to select the channels, the attributes, and bins of probability density functions (PDFs) that can be useful for seizure prediction. Due to the multi-channel nature of this process, there is a need for a majority voting strategy to take a decision for each signal segment. Simulation results reveal an average prediction rate of 96.46%, an average false-alarm rate of 0.028077/h and an average prediction time of 60.1595 min for a 90-min prediction horizon.
The effect of pressure on the structural, elastic, and thermodynamic properties of SrTe in both B1 (rocksalt) and B2 (CsCl-type) phases and the SrTe1?xCax alloys with Ca dopant concentrations at x = 0.16667, 0.20, 0.33333, 0.42857, 0.44444 and 0.50 have been investigated using the two new gradient-corrected functional developed by Perdew, J.P.; Burke, K.; Ernzerhof named Density-Gradient Expansion for Exchange in Solids (PBEsol) and generalized Wu–Cohen (WC), in a significant range of pressure from 0 GPa to 30 GPa. The structure parameters, elastic stiffness constants cij, the bulk modulus (B), Kleinman parameter (\( \xi \)), shear anisotropies Ashear are also determined. Furthermore, as reported in this study, the aggregate elastic modulus (B, G, E), Poisson’s ratio (ν) and the Lame’s coefficients (λ) are estimated. On the other hand, the ductility, brittleness, longitudinal, transverse sound velocities and the Debye temperature ΘD(T) are also obtained. Importantly, our results are in reasonable agreement with the available theoretical and experimental data. To the best of our knowledge, this is the first study of the effect of the composition on the properties of the SrTe1?xCax alloys which may encourage other works for the confirmation of the reported results. 相似文献
We perceive big data with massive datasets of complex and variegated structures in the modern era. Such attributes formulate hindrances while analyzing and storing the data to generate apt aftermaths. Privacy and security are the colossal perturb in the domain space of extensive data analysis. In this paper, our foremost priority is the computing technologies that focus on big data, IoT (Internet of Things), Cloud Computing, Blockchain, and fog computing. Among these, Cloud Computing follows the role of providing on-demand services to their customers by optimizing the cost factor. AWS, Azure, Google Cloud are the major cloud providers today. Fog computing offers new insights into the extension of cloud computing systems by procuring services to the edges of the network. In collaboration with multiple technologies, the Internet of Things takes this into effect, which solves the labyrinth of dealing with advanced services considering its significance in varied application domains. The Blockchain is a dataset that entertains many applications ranging from the fields of crypto-currency to smart contracts. The prospect of this research paper is to present the critical analysis and review it under the umbrella of existing extensive data systems. In this paper, we attend to critics' reviews and address the existing threats to the security of extensive data systems. Moreover, we scrutinize the security attacks on computing systems based upon Cloud, Blockchain, IoT, and fog. This paper lucidly illustrates the different threat behaviour and their impacts on complementary computational technologies. The authors have mooted a precise analysis of cloud-based technologies and discussed their defense mechanism and the security issues of mobile healthcare.
This paper presents a simple and efficient multiple access interference (MAI) cancelation technique in optical code division multiple access (OCDMA) system. The proposed technique is based on hybrid frequency shift keying (FSK) with an enhanced modified prime code as a signature sequence for coding techniques. Coherent FSK modulation along with incoherent demodulation using Arrayed-Waveguide Grating has been examined in the transceiver structure. In the proposed technique, a reference signal is constructed by using one of the addressed spreading sequences, and MAI cancelation is performed by subtracting the reference signal from the received signal of the desired user. The performance of the proposed FSK-OCDMA system is compared with the performance of the existing pulse position modulation (PPM)–OCDMA system. The simulation results reveal that the bit-error rate performance of the proposed technique is superior to the performance of the pulse position modulation (PPM) technique. Also, the results indicate that the proposed technique is very power efficient, and when the bit rate is constant, the network capacity can be expanded to accommodate a large number of simultaneous active users with low error rate. Moreover, the proposed technique simplifies the hardware of the receiver design. 相似文献
The fast and maximum thermal neutron fluxes from the DD-109 neutron generator at the University of Sharjah were experimentally measured by the activation technique using different neutron reactions. The thermal and fast neutron fluxes were found to be 2.960 × 10~6 and6.186 × 10~7 n/cm~2 s, respectively. This was done to verify the modeling results for the optimum moderator thickness needed to maximize the thermal neutron flux. The optimum moderator thickness was found to be between 3.5 and4 cm. The present data were compared with the detailed MCNP model-based calculation performed in earlier work to simulate the generator. 相似文献
The kinetics of initial stage sintering of UO2 powder were reinvestigated, using Ar-10% H2 atmosphere. The effect of the addition of neodynium oxide was studied. The results revealed that surface and grain boundary diffusion mechanisms act simultaneously. The values of activation energies were found to be in the temperature range 870–942°C and in the temperature range of 942–1030°C for UO2, and in the temperature range 1030–1150°C for UO2 + Nd2O3. An important decrease in the calculated diffusion coefficient occurs by the addition of Nd2O3. 相似文献
This work aims to study the thermal behavior of basic-geopolymers derived from metakaolin (clay). The geopolymers were characterized by different techniques: thermal analysis (DTA, TGA), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and impedance spectroscopy. Some physicochemical properties of the products were also determined: the phases obtained after geopolymer heat treatment and their electrical properties. The results obtained after drying and heat treatment showed that the products kept their initial shapes, but revealed variable colors depending on the temperatures at which they were treated. The products obtained are amorphous between 300 up to 600 °C with peaks relating to the presence of nanocrystallites of muscovites and zeolite, thus at 900 °C it is quite amorphous but only contains nanocrystallites of muscovites. From the temperature of 950 °C, we notice that the geopolymer has been transformed into a crystalline compound predominated by the Nepheline (NaAlSiO4) with the presence of a crystalline phase by minor peaks of Muscovite, this crystalline character has been increased at 1100 °C to obtain a whole phase crystalline of a Nepheline. The treatment of this geopolymer for one hour at 1200 °C shows an amorphous phase again corresponding to corundum (α-Al2O3). This indicates that the dissolution of the grains by the liquid phase induces the conversion of the material structure from sialate [–Si–O–Al–O] to sialate siloxo [–Si–O–Al–O–Si–O–] and the formation of a new crystalline phase (α-Al2O3). This development of sialate to sialate-siloxo was confirmed by IR spectroscopy. As mentioned above, from 300 to 900 °C, Na-sialate geopolymer exhibits the same disorder structure of nepheline. The crystal structure of nepheline is characterized by layers of six-membered tetrahedral rings of exclusively oval conformation. The rings are built by Regularly alternating tetrahedral AlO4 and SiO4. Stacking the layer’s parallel to the c axis gives a three-dimensional network containing channels occupied by Na cations. This topology favors easy movement of Na+ ions throughout the structure. For this reason, ionic migration in nepheline is widely reported. The refinement of Na-Sialate geopolymer at room temperature gives bulk high ionic conductivity of about 5 × 10?5 S cm?1 and this is due to the probable joint contribution of H+ and Na+ ions. Above 200 °C, Na+ seems to remain the only charge carrier with a low activation energy of about Ea?=?0.26 eV. At higher temperatures, the characteristic frequencies become so close that it is impossible to distinguish the contributions. A total resistance comprising both grain and grain boundaries contribution is then determined.
Glass strength can be increased by applying epoxy based surface coatings. A number of models have been presented in the literature to explain the strengthening afforded by these coatings but until now there has been no clear evidence to definitively support one model over another. In this work, finite element models (FEM) of four-point bending test specimens have been developed. These models have been used to study the strength of cracked uncoated and surface coated specimens in order to identify the strengthening mechanism. The FEM results showed that full filling of the crack using epoxy coating is sufficient to heal the crack if the coating inside the crack is ideally glued to the crack surfaces. It is also shown that under these circumstances the coating modulus is relatively unimportant parameter. FEA results for partially filled cracks show that increasing the filled percentage increases the strengthening. Fractographic analysis of the 10 kg indented and coated samples showed that the fracture surfaces do not follow the median crack symmetric plane and that fracture started from another plane when coated properly, however the fracture surface of these samples still starts from the indentation site. On the other hand, fractographic analysis of the 1 kg indented and properly coated samples showed that the samples failed from their edges which indicate that the crack was overcome. The finite element results show that the diamond imprint resulting from the Vickers indentation play an important role in this type of fracture. 相似文献