首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   284篇
  免费   32篇
  国内免费   3篇
电工技术   9篇
化学工业   82篇
金属工艺   1篇
机械仪表   5篇
建筑科学   27篇
能源动力   18篇
轻工业   54篇
水利工程   7篇
石油天然气   2篇
无线电   25篇
一般工业技术   32篇
冶金工业   2篇
原子能技术   6篇
自动化技术   49篇
  2024年   2篇
  2023年   3篇
  2022年   5篇
  2021年   20篇
  2020年   16篇
  2019年   24篇
  2018年   30篇
  2017年   23篇
  2016年   23篇
  2015年   26篇
  2014年   23篇
  2013年   44篇
  2012年   19篇
  2011年   25篇
  2010年   8篇
  2009年   8篇
  2008年   4篇
  2007年   3篇
  2006年   5篇
  2005年   1篇
  2004年   1篇
  2001年   1篇
  1998年   1篇
  1993年   1篇
  1992年   1篇
  1988年   1篇
  1980年   1篇
排序方式: 共有319条查询结果,搜索用时 15 毫秒
251.
Development of ionic liquid-based aqueous two-phase systems as a new viewpoint in the expansion of research in the field of biological materials separation depends on accurate determination of phase diagram. In this work, the efficiency of artificial neural network was studied aiming to forecast the formation possibility of phase diagrams of aqueous two-phases systems for the ability of range of ionic liquids composed of different anions with a selected salt. In order to investigate effects of the anion of ionic liquids on phase diagram, this study was performed on 472 of experimental data. On the basis of the accurate set of statistical measurements obtained, a good agreement between the experimental data points and the predicted values was gained. Furthermore, the group method of data handling was applied to model the molality of ionic liquids and a reasonable agreement was obtained between experimental data and the predicted values of this model.  相似文献   
252.
An elliptical function low‐pass filter (LPF) with ultra wide stopband and sharp cutoff frequency is proposed. This filter is composed of symmetrical cascaded modified hairpin resonators and U‐shaped resonators. The transition band is from 1 to 1.21 GHz with ?3 and ?20 dB, respectively. For this filter, the return loss is better than 17 dB in 80% of passband width, where the insertion loss is less than 0.3 dB. The band‐stop rejection is greater than 20 dB from 1.21 to 26.35 GHz and 40 dB from 1.35 to 12.5 GHz. To validate the design and analysis, the proposed LPF has been designed and fabricated on a 20 mil thick RO4003 substrate with a relative dielectric constant 3.38 and loss tangent of 0.0021. The filter is evaluated by experiment and simulation with a good agreement. © 2013 Wiley Periodicals, Inc. Int J RF and Microwave CAE 24:314–321, 2014.  相似文献   
253.
It is well known that inter-crystal scattering and penetration(ICS-P) are major spatial resolution limiting parameters in dedicated SPECT scanners with pixelated crystal.In this study,the effect of ICS-P on crystal identification in different crystal configurations was evaluated using GATE Monte Carlo simulation.A ~(99m)Tc pencil-beam toward central crystal element was utilized.Beam incident angle was assumed to vary from 0° to 45° in 5° steps.The effects of various crystal configurations such as pixel-size,pixel-gap,and crystal material were studied.The influence of photon energy on the crystal identification(CI) was also investigated.Position detection accuracy(PDA) was defined as a factor indicating performance of the crystal.Furthermore,a set of ~(99m)Tc point-source simulations was performed in order to calculate peak-to-valley(PVR) ratio for each configuration.The results show that the CsI(Na)manifests higher PDA than NaI(TI) and YAP(Ce).In addition,as the incident angle increases,the crystal becomes less accurate in positioning of the events.Beyond a crystal-dependent critical angle,the PDA monotonically reduces.The PDA reaches 0.44 for the CsI(Na) at 45° beam angle.The PDAs obtained by the point-source evaluation also behave the same as for the pencil-beam irradiations.In addition,the PVRs derived from flood images linearly correlate their corresponding PDAs.In conclusion,quantitative assessment of ICS-P is mandatory for scanner design and modeling the system matrix during iterative reconstruction algorithms for the purpose of resolution modeling in ultra-high-resolution SPECT.  相似文献   
254.
A chemical kinetic model for i‐butane and n‐butane catalytic cracking over synthesized HZSM‐5 zeolite, with SiO2/Al2O3 = 484, and in a plug flow reactor under various operating conditions, has been developed. To estimate the kinetic parameters of catalytic cracking reactions of i‐butane and n‐butane, a lump kinetic model consisting of six reaction steps and five lumped components is proposed. This kinetic model is based on mechanistic aspects of catalytic cracking of paraffins into olefins. Furthermore, our model takes into account the effects of both protolytic and bimolecular mechanisms. The Levenberg–Marquardt algorithm was used to estimate kinetic parameters. Results from statistical F‐tests indicate that the kinetic models and the proposed model predictions are in satisfactory agreement with the experimental data obtained for both paraffin reactants. © 2011 American Institute of Chemical Engineers AIChE J, 58: 2456–2465, 2012  相似文献   
255.
Hydrolysis kinetics of the lead silicate glass (LSG) with 40 mol% PbO in 0.5 N HNO3 aqueous acid solution was investigated. The surface morphology and the gel layer thickness were studied by scanning electron microscopy (SEM) micrographs. Energy dispersive X-ray spectroscopy (EDS) and inductively coupled plasma spectroscopy (ICP) were used to determine the composition of the gel layer and the aqueous solution, respectively. The silicon content of the dissolution products was determined by using weight-loss data and compositions of the gel layer and the solution. The kinetic parameters were determined using the shrinking-core-model (SCM) for rate controlling step. The activation energy obtained for hydrolysis reaction was Qche = 56.07 kJ/mole. The diffusion coefficient of the Pb ions from the gel layer was determined by using its concentration in solution and in LSG. The shrinkage of the sample and the gel layer thickness during dissolution process were determined.  相似文献   
256.
Lock time and convergence time are the most important challenges in delay‐locked loops (DLLs). In this paper we cover French very high frequency band with a novel all‐digital fast‐lock DLL‐based frequency synthesizer. Because this new architecture uses a digital signal processing unit instead of using phase frequency detector, charge pump, and loop filter in conventional DLL, therefore, it shows better jitter performance, lock time, and convergence speed than previous related works. Optimization methods are used to make input and output signals of the proposed DLL in phase. The proposed architecture is designed to cover all channels of French very high frequency band by choosing number of delay cells in signal path. Simulation has been done for 22–27 delay cells, and fREF = 16 MHz, which can produce output frequency in range of 176–216 MHz. Locking time is approximately 0.3 µs, which is equal to five clock cycles of reference clock. All of the simulation results show superiority of the proposed structure. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
257.
Electricity is conceivably the most multipurpose energy carrier in modern global economy, and therefore primarily linked to human and economic development. Energy sector reform is critical to sustainable energy development and includes reviewing and reforming subsidies, establishing credible regulatory frameworks, developing policy environments through regulatory interventions, and creating market-based approaches. Energy security has recently become an important policy driver and privatization of the electricity sector has secured energy supply and provided cheaper energy services in some countries in the short term, but has led to contrary effects elsewhere due to increasing competition, resulting in deferred investments in plant and infrastructure due to longer-term uncertainties. On the other hand global dependence on fossil fuels has led to the release of over 1100 GtCO2 into the atmosphere since the mid-19th century. Currently, energy-related GHG emissions, mainly from fossil fuel combustion for heat supply, electricity generation and transport, account for around 70% of total emissions including carbon dioxide, methane and some traces of nitrous oxide. This multitude of aspects play a role in societal debate in comparing electricity generating and supply options, such as cost, GHG emissions, radiological and toxicological exposure, occupational health and safety, employment, domestic energy security, and social impressions. Energy systems engineering provides a methodological scientific framework to arrive at realistic integrated solutions to complex energy problems, by adopting a holistic, systems-based approach, especially at decision making and planning stage. Modeling and optimization found widespread applications in the study of physical and chemical systems, production planning and scheduling systems, location and transportation problems, resource allocation in financial systems, and engineering design. This article reviews the literature on power and supply sector developments and analyzes the role of modeling and optimization in this sector as well as the future prospective of optimization modeling as a tool for sustainable energy systems.  相似文献   
258.
Two different kinds of non-Newtonian nanofluids were prepared by dispersion of Al2O3 and TiO2 nanoparticles in a 0.5 wt.% aqueous solution of carboxymethyl cellulose (CMC). Natural convection heat transfer of non-Newtonian nanofluids in a vertical cylinder uniformly heated from below and cooled from top was investigated experimentally. Results show that the heat transfer performance of nanofluids is significantly enhanced at low particle concentrations. Increasing nanoparticle concentration has a contrary effect on the heat transfer of nanofluids, so at concentrations greater than 1 vol.% of nanoparticles the heat transfer coefficient of nanofluids is less than that of the base fluid. Indeed it seems that for both nanofluids there exists an optimum nanoparticle concentration that heat transfer coefficient passes through a maximum. The optimum concentrations of Al2O3 and TiO2 nanofluids are about 0.2 and 0.1 vol.%, respectively. It is also observed that the heat transfer enhancement of TiO2 nanofluids is higher than that of the Al2O3 nanofluids. The effect of enclosure aspect ratio was also investigated. As expected, the heat transfer coefficient of nanofluids as well as the base fluid increases by increasing the aspect ratio.  相似文献   
259.
Understanding the co‐crystallization behavior of ternary polyethylene (PE) blends is a challenging task. Herein, in addition to co‐crystallization behavior, the rheological and mechanical properties of melt compounded high density polyethylene (HDPE)/low density polyethylene (LDPE)/Zeigler ? Natta linear low density polyethylene (ZN‐LLDPE) blends have been studied in detail. The HDPE content of the blends was kept constant at 40 wt% and the LDPE/ZN‐LLDPE ratio was varied from 0.5 to 2. Rheological measurements confirmed the melt miscibility of the entire blends. Study of the crystalline structure of the blends using DSC, wide angle X‐ray scattering, small angle X‐ray scattering and field emission SEM techniques revealed the formation of two distinct co‐crystals in the blends. Fine LDPE/ZN‐LLDPE co‐crystals, named tie crystals, dispersed within the amorphous gallery between the coarse HDPE/ZN‐LLDPE co‐crystals were characterized for the first time in this study. It is shown that the tie crystals strengthen the amorphous gallery and play a major role in the mechanical performance of the blend.© 2016 Society of Chemical Industry  相似文献   
260.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号