首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2175篇
  免费   38篇
  国内免费   8篇
电工技术   49篇
综合类   7篇
化学工业   489篇
金属工艺   46篇
机械仪表   60篇
建筑科学   79篇
矿业工程   5篇
能源动力   126篇
轻工业   156篇
水利工程   21篇
石油天然气   18篇
无线电   216篇
一般工业技术   476篇
冶金工业   157篇
原子能技术   14篇
自动化技术   302篇
  2024年   52篇
  2023年   34篇
  2022年   59篇
  2021年   92篇
  2020年   66篇
  2019年   67篇
  2018年   96篇
  2017年   68篇
  2016年   71篇
  2015年   48篇
  2014年   74篇
  2013年   138篇
  2012年   85篇
  2011年   106篇
  2010年   94篇
  2009年   90篇
  2008年   96篇
  2007年   99篇
  2006年   67篇
  2005年   65篇
  2004年   43篇
  2003年   48篇
  2002年   30篇
  2001年   32篇
  2000年   20篇
  1999年   31篇
  1998年   43篇
  1997年   28篇
  1996年   29篇
  1995年   30篇
  1994年   26篇
  1993年   24篇
  1992年   22篇
  1991年   22篇
  1990年   10篇
  1989年   15篇
  1988年   9篇
  1987年   17篇
  1986年   15篇
  1985年   19篇
  1984年   14篇
  1983年   13篇
  1982年   10篇
  1981年   12篇
  1980年   13篇
  1979年   15篇
  1978年   11篇
  1977年   14篇
  1976年   11篇
  1975年   4篇
排序方式: 共有2221条查询结果,搜索用时 0 毫秒
981.
Functional role of pre-fermentation of food waste (PFW) was studied to enhance the performance of single chambered microbial fuel cell (MFC) (mediatorless; non-catalyzed graphite electrodes; open-air cathode). Significant improvement in power output was noticed after pre-treatment (391 mV; 530 mA/m2) compared to unfermented waste (275 mV; 361 mA/m2). MFC performance was found to depend on applied organic load and nature of substrate in terms of power generation and substrate degradation. The pre-fermentation of waste facilitated lowering of activation losses and in turn increased the bio-electrochemical activity of biocatalyst, leading to an effective MFC performance. Fuel cell behavior with respect to polarization, anode potential and bio-electrochemical behavior also supported the performance of MFC with PFW. PFW operation showed higher catalytic current in voltammograms with fine catalytic peaks supporting the positive role of pre-fermentation in discharging electrons effectively. VFA and pH profiles also correlated well with power generation and substrate degradation pattern.  相似文献   
982.
Power generation in Microbial fuel cells (MFCs) is a function of various physico-chemical as well as biological parameters. In this study, we have examined the effect of ionic strength, cation exchanger and inoculum age on power generation in a mediator MFC with methylene blue as electron mediator using Enterobacter cloacae IIT-BT08. The effect of ionic strength was studied using NaCl in the anode chamber of a two chambered salt-bridge MFC at concentrations of 5 mM, 10 mM and 15 mM. Maximum power density of 12.8 mW/m2 was observed when 10 mM NaCl was used. Corresponding current density was noted to be 35.5 mA/m2. Effect of cation exchanger was observed by replacing salt-bridge with a proton exchange membrane of equal surface area. When the salt-bridge was replaced by a proton exchange membrane, a 3-fold increase in the power density was observed. Power density and current density of 37.8 mW/m2 and 110.3 mA/m2 respectively were detected. The influence of the pre-inoculum on the MFC was studied using E. cloacae IIT-BT08 grown for 12, 14, 16 and 18 h. It was observed that 16 h grown culture when inoculated in the anode chamber gave the maximum power output. Power density and current density of 68 mW/m2 and 168 mA/m2 respectively were obtained. We demonstrate from these results that both physico-chemical as well as biological parameters need to be optimized for improving the power generation in MFCs.  相似文献   
983.
Hybrid composites are fabricated by the combination of two or more fibers using a single matrix. It can be fabricated either with all of its constituents as natural fibers or with one or more constituents belonging to artificial fiber. The stacking sequence of the fibers in a hybrid composite can be altered resulting in a varying mechanical properties. In the present study the MWCNT filled banana-jute-flax fiber reinforced composites are investigated for its mechanical behavior by varying the stacking sequence of the fiber layers and weight % of Multi-Walled Carbon Nano Tube (MWCNT). A Modified resin was prepared by adding MWCNT in the epoxy resin using ultrasonic probe sonicator and a hybrid composite is fabricated with it by using compression moulding processes. The mechanical properties are evaluated as per the ASTM standards. The incorporating of MWCNT and the stacking sequence of fiber layers shows the greater impact on the mechanical properties. The composites of jute fibers at the extremities (JBFBFBFJ) exhibiting the enhancement of tensile, compressive and hardness properties than the flax fiber at the extremities (FBJBJBJF) and it could be used in various automobile applications. Microstructure of the samples are investigated by Scanning Electron Microscope (SEM)with Energy dispersive X-ray (EDS). The results indicate that increasing the weight % of MWCNT and varying the stacking sequence of fibers improves the mechanical properties of hybrid natural fiber composites.  相似文献   
984.
The genus Cinnamomum comprises of several hundreds of species, which are distributed in Asia and Australia. Cinnamomum zeylanicum, the source of cinnamon bark and leaf oils, is an indigenous tree of Sri Lanka, although most oil now comes from cultivated areas. C. zeylanicum is an important spice and aromatic crop having wide applications in flavoring, perfumery, beverages, and medicines. Volatile oils from different parts of cinnamon such as leaves, bark, fruits, root bark, flowers, and buds have been isolated by hydro distillation/steam distillation and supercritical fluid extraction. The chemical compositions of the volatile oils have been identified by GC and GC-MS. More than 80 compounds were identified from different parts of cinnamon. The leaf oil has a major component called eugenol. Cinnamaldehyde and camphor have been reported to be the major components of volatile oils from stem bark and root bark, respectively. Trans-cinnamyl acetate was found to be the major compound in fruits, flowers, and fruit stalks. These volatile oils were found to exhibit antioxidant, antimicrobial, and antidiabetic activities. C. zeylanicum bark and fruits were found to contain proanthocyandins with doubly linked bis-flavan-3-ol units in the molecule. The present review provides a coherent presentation of scattered literature on the chemistry, biogenesis, and biological activities of cinnamon.  相似文献   
985.
The cruciferous sprouts, including cabbage (Brassicaoleracea), broccoli (Brassicacapitata) and radish (Raphanussativus), were cultivated with supplementation of sulphur salts. With supplementation of sulphur at 60 kg/ha, a 2–5-fold increases in total glucosinolates contents in the sprouts were observed. The individual glucosinolates whose concentration increased most significantly, included progoitrin, glucoerucin, glucobrassicin, glucohirsutin and 4-methoxybrassicin. The antioxidant properties of these sulphur supplemented sprouts were also higher than that of the normal sprouts due to the increases of phenolic compounds. Consequently, the glucosinolates fortified sprouts had higher anti-proliferative activity against HepG2 human hepatocarcinoma cells than the normal sprouts, as the cell viability decreased by 22–35%. Also in CT26 mouse colorectal cancer cells, the cell viability decrease by 34–59%.  相似文献   
986.
Polyaniline (PANI) has gained interest due to its reasonably good conductivity, stability, easy preparation, affordability, and redox properties. Aniline monomers, emulsifiers, and dopant DBSA are used for emulsion polymerization in water, using various oxidants. The DBSA-doped polyaniline was extracted via a chloroform solution, and PLA was added directly in the emulsion to form the DBSA-PANI/PLA composite electrospinning solution. The DBSA-PANI/PLA composite nanofiber membrane was prepared via electrospinning. FeCl3, K2Cr2O7, and ammonium persulfate were used as oxidants in the emulsion polymerization process. The Infrared spectra showed the full characteristic peaks of polyaniline when ammonium persulfate was used as an oxidant. The transmission rate of the characteristic peak became smaller when the ratio of ammonium persulfate/aniline monomer increased from 0.5 to 1, demonstrating the polyaniline content increased. The electrospun nanofibers that were prepared were spindle-shaped fibers and the fiber diameter distribution was wide. The PANI/PLA electrospun fiber membrane conductivity was several orders of magnitude higher than the pure PLA membrane. The PANI/PLA electrospun fiber membrane had the highest conductivity (9.1 × 10-3 S/cm) when (APS/An) = 1.0. This prepared PANI/PLA nanometer fiber membrane could be used for electromagnetic shielding and could be an effective biomaterial within the engineering of electrically responsive biological tissues and organs.  相似文献   
987.
The antibacterial effect of caprylic acid (35 and 50 mM) on Escherichia coli O157:H7 and total anaerobic bacteria at 39 degrees C in rumen fluid (pH 5.6 and 6.8) from 12 beef cattle was investigated. The treatments containing caprylic acid at both pHs significantly reduced (P < 0.05) the population of E. coli O157:H7 compared with that in the control samples. At pH 5.6, both levels of caprylic acid killed E. coli O157:H7 rapidly, reducing the pathogen population to undetectable levels at 1 min of incubation (a more than 6.0-log CFU/ml reduction). In buffered rumen fluid at pH 6.8, 50 mM caprylic acid reduced the E. coli O157:H7 population to undetectable levels at 1 min of incubation, whereas 35 mM caprylic acid reduced the pathogen by approximately 3.0 and 5.0 log CFU/ml at 8 and 24 h of incubation, respectively. At both pHs, caprylic acid had a significantly lesser (P < 0.05) and minimal inhibitory effect on the population of total anaerobic bacteria in rumen compared with that on E. coli O157:H7. At 24 h of incubation, caprylic acid (35 and 50 mM) reduced the population of total anaerobic bacteria by approximately 2.0 log CFU/ml at pH 5.6, whereas at pH 6.8, caprylic acid (35 mM) did not have any significant (P > 0.05) inhibitory effect on total bacterial load. Results of this study revealed that caprylic acid was effective in inactivating E. coli O157:H7 in bovine rumen fluid, thereby justifying its potential as a preslaughter dietary supplement for reducing pathogen carriage in cattle.  相似文献   
988.
Biodegradable polymers are desirable for a variety of applications, such as in packaging, agriculture, and medicine. Polyethylene (PE) blended with starch is already found to be a potential candidate to replace nondegradable thermoplastics in the areas of packaging. Films of polyethylene (PE)–starch blends with and without vegetable oil as a compatibilizer were prepared. The degradation of the films under thermooxidative treatment, ultraviolet light exposure, high temperature, high humidity, and natural ambience (soil burial) were monitored. It is seen that vegetable oil as an additive has a dual role: as a plasticizer, it improves the film quality; as a prooxidant, it accelerates degradation of the film. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 70: 2251–2257, 1998  相似文献   
989.
The success of resin transfer molding (RTM) depends upon the complete wetting of the fiber preform. Effective mold designs and process modifications facilitating the improved impregnation of the preform have direct impact on the successful manufacturing of parts. Race tracking caused by variations in permeabilities around bends, corners in liquid composite molding (LCM) processes such as RTM have been traditionally considered undesirable, while related processes such as vacuum assisted RTM (VARTM) and injection molding have employed flow channels to improve the resin distribution. In this paper, studies on the effect of flow channels are explored for RTM through process simulation studies involving flow analysis of resin, when channels are involved. The flow in channels has been modeled and characterized based on equivalent permeabilities. The flow in the channels is taken to be Darcian as in the fiber preform, and process modeling and simulation tools for RTM have been employed to study the flow and pressure behavior when channels are involved. Simulation studies based on a flat plate indicated that the pressures in the mold are reduced with channels, and have been compared with experimental results and equivalent permeability models. Experimental comparisons validate the reduction in pressures with channels and validate the use of equivalent permeability models. Numerical simulation studies show the positive effect of the channels to improve flow impregnation and reduce the mold pressures. Studies also include geometrically complex parts to demonstrate the positive advantages of flow channels in RTM.  相似文献   
990.
The thermal expansion of Ni3Al alloys with and without ternary additions have been investigated with the aid of a dilatometer. The Ni3Al alloys were studied over the temperature range 25–1000 °C. The coefficient of thermal expansion of all the aluminides studied in this investigation varies linearly with the temperature. The coefficient of thermal expansion of Ni3Al is found to show an increase with the decrease in Al content from stoichiometric composition. B and Zr additions decrease the value of Ni3Al alloys at room temperature while Hf and Ti additions do not alter it significantly.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号