首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1425篇
  免费   148篇
  国内免费   4篇
电工技术   30篇
化学工业   422篇
金属工艺   88篇
机械仪表   60篇
建筑科学   33篇
能源动力   67篇
轻工业   128篇
水利工程   1篇
无线电   276篇
一般工业技术   275篇
冶金工业   30篇
原子能技术   13篇
自动化技术   154篇
  2024年   1篇
  2023年   8篇
  2022年   21篇
  2021年   34篇
  2020年   31篇
  2019年   36篇
  2018年   45篇
  2017年   51篇
  2016年   62篇
  2015年   69篇
  2014年   69篇
  2013年   100篇
  2012年   123篇
  2011年   117篇
  2010年   82篇
  2009年   95篇
  2008年   61篇
  2007年   56篇
  2006年   70篇
  2005年   67篇
  2004年   48篇
  2003年   48篇
  2002年   40篇
  2001年   34篇
  2000年   34篇
  1999年   38篇
  1998年   21篇
  1997年   24篇
  1996年   20篇
  1995年   15篇
  1994年   7篇
  1993年   6篇
  1992年   3篇
  1991年   7篇
  1990年   3篇
  1989年   7篇
  1988年   6篇
  1986年   5篇
  1985年   1篇
  1984年   4篇
  1983年   1篇
  1982年   2篇
  1979年   1篇
  1974年   1篇
  1972年   1篇
  1971年   2篇
排序方式: 共有1577条查询结果,搜索用时 15 毫秒
81.
82.
A fully dense SiC ceramic with a room‐temperature thermal conductivity of 262 W·(m·K)?1 was obtained via spark plasma sintering β‐SiC powder containing 0.79 vol% Y2O3‐Sc2O3. High‐resolution transmission electron microscopy revealed two different SiC‐SiC boundaries, that is, amorphous and clean boundaries, in addition to a fully crystallized junction phase. A high thermal conductivity was attributed to a low lattice oxygen content and the presence of clean SiC‐SiC boundaries.  相似文献   
83.
The thermal stability and adhesion properties, such as lap‐shear strength of hot‐melt adhesives were obtained from amorphous poly(α‐olefins) and thermoplastic rubber [styrene–ethylene–butylene copolymer (SEBS)] blends. The addition of SEBS increased the toughness and viscosity and decreased the lap‐shear strength of the hot‐melt adhesive. Terpene tackifier resin offered enhanced lap‐shear strength; this was more effective when combined tackifier resin was added on the hot‐melt adhesive. Only a small amount of wax and antioxidant affected the thermal stability and lap‐shear strength of the hot‐melt adhesive. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   
84.
The compatibility and crystallization of dielectric thick films, consisting of a bismuth borosilicate glass and crystalline cordierite, on a LiZn ferrite substrate were investigated by focusing on phase development and microstructural changes. Significant diffusion of Li and Fe from the substrate to the dielectric was confirmed as unexpected crystalline phases such as Li2Al2Si3O10 and Fe2O3 were found in the thick films fired at 850°C. The crystallization was believed to be initiated from the film interface and developed further toward the film surface as evidenced from cross-sectional microstructures of the films with additional firings. The degree of crystallization and the relative contents of the observed phases were dependent on the ratio between the glass and cordierite and the number of refirings.  相似文献   
85.
结合核动力堆用燃料包壳对锆合金耐蚀性能的要求,大范围考察了Nb含量为0.5%,1.0%,2.6%(wt%)的Zr—Nb二元合金及含Cr、Mo、Sn、Bi、Fe、Ce和Si的Zr-1Nb及多元合金,共17种成分的Zr-Nb系合金在400℃,10.3MPa水蒸汽中的长期腐蚀规律(达182天)。在腐蚀转折前,Zr-Nb系合金的腐蚀动力学曲线均近似于抛物线规律,而在转折之后存在与线性规律偏离现象。长期腐蚀增重的分析说明:通过合理的多元合金化,即增加或降低Nb含量,并主加Fe、Bi、Sn和Ni而辅加少量的Cr、Mo、Te和Si,Zr-1Nb合金的耐蚀性大有潜力可挖。  相似文献   
86.
The effects of reduction ratio during roll bonding on the microstructural evolution at interface and subsequent mechanical properties of roll-bonded Al/Cu 2-ply sheets were investigated. The interface microstructures for several Al/Cu 2-ply sheets fabricated under different reduction ratios between 30% and 65% were verified by transmission electron microscopy (TEM). Taking the difference of interface microstructure into consideration, 3-point bending and peel tests were performed for obtaining flexural and bonding strengths for Al/Cu 2-ply sheets. The effect of the quantified areas of metallurgical bonding at interfaces on the bonding strength was also discussed. The results show that both the bonding and flexural strengths for Al/Cu 2-ply sheets are reduced by decreasing the reduction ratio during the roll bonding process, which is strongly correlated with the interface microstructure. This was especially verified by observing the interface delamination from the 3-point bent samples.  相似文献   
87.
The presence of co-infections or superinfections with bacterial pathogens in COVID-19 patients is associated with poor outcomes, including increased morbidity and mortality. We hypothesized that SARS-CoV-2 and its components interact with the biofilms generated by commensal bacteria, which may contribute to co-infections. This study employed crystal violet staining and particle-tracking microrheology to characterize the formation of biofilms by Streptococcus pneumoniae and Staphylococcus aureus that commonly cause secondary bacterial pneumonia. Microrheology analyses suggested that these biofilms were inhomogeneous soft solids, consistent with their dynamic characteristics. Biofilm formation by both bacteria was significantly inhibited by co-incubation with recombinant SARS-CoV-2 spike S1 subunit and both S1 + S2 subunits, but not with S2 extracellular domain nor nucleocapsid protein. Addition of spike S1 and S2 antibodies to spike protein could partially restore bacterial biofilm production. Furthermore, biofilm formation in vitro was also compromised by live murine hepatitis virus, a related beta-coronavirus. Supporting data from LC-MS-based proteomics of spike–biofilm interactions revealed differential expression of proteins involved in quorum sensing and biofilm maturation, such as the AI-2E family transporter and LuxS, a key enzyme for AI-2 biosynthesis. Our findings suggest that these opportunistic pathogens may egress from biofilms to resume a more virulent planktonic lifestyle during coronavirus infections. The dispersion of pathogens from biofilms may culminate in potentially severe secondary infections with poor prognosis. Further detailed investigations are warranted to establish bacterial biofilms as risk factors for secondary pneumonia in COVID-19 patients.  相似文献   
88.
The paper aims at the development of the wavelet neural network (WNN) based conservative meta-model that satisfies the constraint feasibility of approximate optimal solution. The WNN based constraint-feasible meta-model is formulated via exterior penalty method to optimally determine interconnection weights and dilation and translation coefficients in the network. Using Ackley’s path function, the approximation performance of WNN is first tested in comparison with BPN. The proposed approach of constraint feasibility is then verified through a ten-bar planar truss problem. For constrained approximate optimization, the structural design of a composite rotor blade is explored to support the proposed strategies.  相似文献   
89.
A new partial smoke extraction system for the Busan–Geoje immersed tunnel was investigated experimentally using simulated tunnel fires. The tests were performed in a 1:20-scale model tunnel with a smoke extraction duct between two traffic tubes. The fire corresponded to a 5-MW full-scale fire, based on Froude modeling. Isothermal and thermal experimental models were considered. The performance of the partial smoke extraction system was quantified under natural and longitudinal ventilation conditions. The results showed that the smoke extraction efficiency of the natural ventilation was 30% better than with longitudinal ventilation, because of smoke stratification in the tunnel. Additionally, the efficiency obtained from the thermal model was comparable to that from the isothermal model under both ventilation conditions. The results suggested that the use of a partial smoke extraction system without longitudinal ventilation improved the initial visibility during tunnel fires.  相似文献   
90.
Proteins on biomicroelectromechanical systems (BioMEMS) confer specific molecular functionalities. In planar FET sensors (field-effect transistors, a class of devices whose protein-sensing capabilities we demonstrated in physiological buffers), interfacial proteins are analyte receptors, determining sensor molecular recognition specificity. Receptors are bound to the FET through a polymeric interface, and gross disruption of interfaces that removes a large percentage of receptors or inactivates large fractions of them diminishes sensor sensitivity. Sensitivity is also determined by the distance between the bound analyte and the semiconductor. Consequently, differential properties of surface polymers are design parameters for FET sensors. We compare thickness, surface roughness, adhesion, friction and wear properties of silane polymer layers bound to oxides (SiO2 and Al2O3, as on AlGaN HFETs). We compare those properties of the film–substrate pairs after an additional deposition of biotin and streptavidin. Adhesion between protein and device and interfacial friction properties affect FET reliability because these parameters affect wear resistance of interfaces to abrasive insult in vivo. Adhesion/friction determines the extent of stickage between the interface and tissue and interfacial resistance to mechanical damage. We document systematic, consistent differences in thickness and wear resistance of silane films that can be correlated with film chemistry and deposition procedures, providing guidance for rational interfacial design for planar AlGaN HFET sensors.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号