首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1507篇
  免费   91篇
  国内免费   7篇
电工技术   20篇
化学工业   330篇
金属工艺   33篇
机械仪表   23篇
建筑科学   56篇
矿业工程   1篇
能源动力   34篇
轻工业   262篇
水利工程   7篇
石油天然气   2篇
无线电   112篇
一般工业技术   250篇
冶金工业   156篇
原子能技术   3篇
自动化技术   316篇
  2024年   3篇
  2023年   6篇
  2022年   19篇
  2021年   40篇
  2020年   24篇
  2019年   29篇
  2018年   50篇
  2017年   47篇
  2016年   52篇
  2015年   35篇
  2014年   74篇
  2013年   107篇
  2012年   109篇
  2011年   107篇
  2010年   89篇
  2009年   79篇
  2008年   83篇
  2007年   70篇
  2006年   63篇
  2005年   55篇
  2004年   43篇
  2003年   43篇
  2002年   37篇
  2001年   32篇
  2000年   26篇
  1999年   31篇
  1998年   44篇
  1997年   29篇
  1996年   18篇
  1995年   21篇
  1994年   21篇
  1993年   18篇
  1992年   15篇
  1991年   2篇
  1990年   10篇
  1989年   6篇
  1988年   7篇
  1987年   3篇
  1985年   8篇
  1984年   6篇
  1983年   4篇
  1982年   3篇
  1981年   8篇
  1980年   7篇
  1977年   7篇
  1976年   5篇
  1975年   2篇
  1974年   1篇
  1973年   3篇
  1970年   1篇
排序方式: 共有1605条查询结果,搜索用时 15 毫秒
81.
The nerve tissue mini-hemoglobin from Cerebratulus lacteus (CerHb) displays an essential globin fold hosting a protein matrix tunnel held to allow traffic of small ligands to and from the heme. CerHb heme pocket hosts the distal TyrB10/GlnE7 pair, normally linked to low rates of O(2) dissociation and ultra-high O(2) affinity. However, CerHb affinity for O(2) is similar to that of mammalian myoglobins, due to a dynamic equilibrium between high and low affinity states driven by the ability of ThrE11 to orient the TyrB10 OH group relative to the heme ligand. We present here the high resolution crystal structures of CerHb in the unligated and carbomonoxy states. Although CO binds to the heme with an orientation different from the O(2) ligand, the overall binding schemes for CO and O(2) are essentially the same, both ligands being stabilized through a network of hydrogen bonds based on TyrB10, GlnE7, and ThrE11. No dramatic protein structural changes are needed to support binding of the ligands, which can freely reach the heme distal site through the apolar tunnel. A lack of main conformational changes between the heme-unligated and -ligated states grants stability to the folded mini-Hb and is a prerequisite for fast ligand diffusion to/from the heme.  相似文献   
82.
The addition of salts, like sodium bicarbonate (SB) or carbonate (SC), into the formulation of bioplastic materials may alter their hydrophilic character to a significant extent. Soy protein isolate (SPI) is a byproduct of the soybean oil industry, which, when properly blended with glycerol (GL), can be further processed through a lab-scale injection molding device. A maximum in the water uptake around 2250 or 2500% is obtained for bioplastics obtained when either SB or SC content is around 1 wt %, respectively. Thus, they exceed the limit to be considered superabsorbent materials (SAMs). Regarding their mechanical properties, a higher presence of SB within the SPI/GL matrix provides materials with a higher extensibility and lower Young's modulus. A higher water uptake is observed after replacing SB for SC in the formulation, probably related to a higher alkalinization of the material as well as to the high hydrophilicity of the carbonate. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47012.  相似文献   
83.
A two‐step synthetic procedure is designed for preparing new flame‐retardant methacrylic monomers containing 9,10‐dihydro‐9‐oxa‐10‐phosphaphenanthrene‐10‐oxide (DOPO) as a substituent side group. DOPO and methacrylate moieties are linked by linear aliphatic hydrocarbon spacers (3 to 11 carbon atoms). Copolymerization with methyl methacrylate is carried out leading to copolymers containing between 2 and 10 wt% phosphorus. All homo‐ and copolymers exhibit a unique glass transition temperature (Tg ). A new group contribution for DOPO‐based substituent is extracted that leads to reasonable estimations of Tg s of other published polymers. The Fox equation provides a good estimation of Tg s for most copolymers and for physical blends of poly(methyl methacrylate) (PMMA) and DOPO. When using monomers having three and four carbon atoms in the hydrocarbon spacer, the Tg of copolymers remains close to that of PMMA over a wide range of composition.  相似文献   
84.
The very early stages of the oxidation of an Fe20Cr2Al alloy, unmodified and ion-implanted by aluminium, yttrium and a combination of both elements, Al and Y, were studied at 1100 °C in oxygen using two-stage-oxidation exposures with 18O2 as a tracer and subsequent characterisation of the scales using SIMS analyses of distribution of oxygen isotopes and oxide-related negative ion clusters, SEM observations of the surface morphology and photoluminescence spectroscopy analysis of the phase composition. The scales formed in all cases, except for the Al-implanted alloy, exhibited layered structures, with the outer part comprising Fe- and Cr-rich oxide, and the inner part being Al2O3, which grew due to a mixed outward–inward mechanism . The alumina sub-layers contained the transient oxides and α-Al2O3. Implanted Al significantly affected the mechanism of the scale growth, providing that the scale consisted essentially of α-Al2O3, and grew via a mixed inward-outward mechanism typical for scales on alumina formers.  相似文献   
85.
Suspension plasma spraying (SPS) is identified as promising for the enhancement of thermal barrier coating (TBC) systems used in gas turbines. Particularly, the emerging columnar microstructure enabled by the SPS process is likely to bring about an interesting TBC lifetime. At the same time, the SPS process opens the way to a decrease in thermal conductivity, one of the main issues for the next generation of gas turbines, compared to the state-of-the-art deposition technique, so-called electron beam physical vapor deposition (EB-PVD). In this paper, yttria-stabilized zirconia (YSZ) coatings presenting columnar structures, performed using both SPS and EB-PVD processes, were studied. Depending on the columnar microstructure readily adaptable in the SPS process, low thermal conductivities can be obtained. At 1100 °C, a decrease from 1.3 W m?1 K?1 for EB-PVD YSZ coatings to about 0.7 W m?1 K?1 for SPS coatings was shown. The higher content of porosity in the case of SPS coatings increases the thermal resistance through the thickness and decreases thermal conductivity. The lifetime of SPS YSZ coatings was studied by isothermal cyclic tests, showing equivalent or even higher performances compared to EB-PVD ones. Tests were performed using classical bond coats used for EB-PVD TBC coatings. Thermal cyclic fatigue performance of the best SPS coating reached 1000 cycles to failure on AM1 substrates with a β-(Ni,Pt)Al bond coat. Tests were also performed on AM1 substrates with a Pt-diffused γ-Ni/γ′-Ni3Al bond coat for which more than 2000 cycles to failure were observed for columnar SPS YSZ coatings. The high thermal compliance offered by both the columnar structure and the porosity allowed the reaching of a high lifetime, promising for a TBC application.  相似文献   
86.
87.
2‐Arachidonoylglycerol plays a major role in endocannabinoid signaling, and is tightly regulated by the monoacylglycerol lipase (MAGL). Here we report the crystal structure of human MAGL. The protein crystallizes as a dimer, and despite structural homologies to haloperoxidases and esterases, it distinguishes itself by a wide and hydrophobic access to the catalytic site. An apolar helix covering the active site also gives structural insight into the amphitropic character of MAGL, and likely explains how MAGL interacts with membranes to recruit its substrate. Docking of 2‐arachidonoylglycerol highlights a hydrophobic and a hydrophilic cavity that accommodate the lipid into the catalytic site. Moreover, we identified Cys201 as the crucial residue in MAGL inhibition by N‐arachidonylmaleimide, a sulfhydryl‐reactive compound. Beside the advance in the knowledge of endocannabinoids degradation routes, the structure of MAGL paves the way for future medicinal chemistry works aimed at the design of new drugs exploiting 2‐arachidonoylglycerol transmission.  相似文献   
88.
89.
90.
Nanocomposites of thermoplastic polyurethane (TPU) with cellulose nanocrystals (CNC) without and with surface treatment are obtained by melt processing. Nanocomposites are obtained with nanofiller weight content near of the theoretical percolation threshold (3.9 wt%). Visual observation of CNC agglomerates is sufficient to prove the inefficiency of the mixing in systems with untreated CNC. The crystallization kinetics of the TPU changes with the addition of CNC and this is confirmed by differential scanning calorimetry analysis. Thermogravimetric analysis prove that the addition of CNC increases the thermal stability of the TPU. From the rheological analysis it is possible to verify the absence of percolation and an intermediate state of sol–gel transition in the nanocomposites. CNC/TPU nanocomposites with 5 wt% of treated CNC present better mechanical performance than de neat TPU and the other processed nanocomposites and display around 130% increase in Young's modulus while retaining significant values of toughness, tensile strength and elongation at break.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号