A +5-V single-power-supply 10-b video BiCMOS sample-and-hold IC is described. Video speed, low power, and 10-b accuracy sample-and-hold operation have been achieved using a complementary connected buffer format sample switch. A high-speed p-n-p transistor used in the sample switch is formed by a combination of n-p-n and PMOS transistors. The sample-and-hold operation is accomplished by feeding back the hold capacitor voltage to the sample switch inputs, so that the inputs transfer symmetrically for the hold capacitor voltage at any input level. The sample-and-hold IC has been implemented in 1.2-μm BiCMOS technology and evaluated. The following results have been obtained: 185-MHz 3-dB bandwidth at 22-pF hold capacitor, 63-dB signal-to-noise ratio at 8-MHz full-scale input, 20-ns acquisition time at 1-V step input, 15-ns switch setting time, and 0.1% linearity error. Power dissipation is 150 mW 相似文献
A high-speed wireline interfaces, e.g. LVDS (Low Voltage Differential Signaling), are widely used in the aerospace field for powerful computing in artificial satellites and aircraft [19]. This paper describes Bit Error Rate (BER) prediction methodology for wireline data transmission under irradiation environment at the design stage of data transmitter, which is useful in proactively determining if the design circuit meets the BER criteria of the target system. Using a custom-designed LVDS transmitter (TX) to enhance latch-up immunity [42], the relationship between transistor size and BER has been analyzed with focusing on Single Event Effect (SEE) as a cause of the bit error. The measurement was executed under 84Kr17+ exposure of 322.0 MeV at various flux condition from 1?×?103 to 5?×?105 count/cm2/sec using cyclotron facility. For the analysis of the bit error, circuit simulation by SPICE was utilized with expressing the irradiation environment by a current source model. The current source model represents a single event strike into the circuit at drain and substrate junctions in bulk MOSFETs. For the construction of the current source model, a charge collection was simulated at the single particle strike with the creation of 3D Technology CAD (TCAD) models for the MOS devices of bulk transistor process technology. The simulation result of the charge correction was converted to a simple time-domain equation, and the single-event current source model was produced using the equation. The single-event current source was applied to SPICE simulation at bias current related circuits in the LVDS transmitter, then simulation results are carefully verified whether the output data is disturbed enough to cause bit errors on wireline data transmission. By the simulation, sensitive MOSFETs have been specified and a sum of the gate area for these MOSFETs has 29% better correlation than the normal evaluation index (sum of the drain area) by comparison to the actual BER measurement. Through the precise revelation of the sensitive area by SPICE simulation using the current model, it became possible to estimate BER under irradiation environment at the pre-fabrication design stage.
The degradation behavior of implants is significantly important for bone repair. However, it is still unprocurable to spatiotemporally regulate the degradation of the implants to match bone ingrowth. In this paper, a magneto-controlled biodegradation model is established to explore the degradation behavior of magnetic scaffolds in a magnetothermal microenvironment generated by an alternating magnetic field (AMF). The results demonstrate that the scaffolds can be heated by magnetic nanoparticles (NPs) under AMF, which dramatically accelerated scaffold degradation. Especially, magnetic NPs modified by oleic acid with a better interface compatibility exhibit a greater heating efficiency to further facilitate the degradation. Furthermore, the molecular dynamics simulations reveal that the enhanced motion correlation between magnetic NPs and polymer matrix can accelerate the energy transfer. As a proof-of-concept, the feasibility of magneto-controlled degradation for implants is demonstrated, and an optimizing strategy for better heating efficiency of nanomaterials is provided, which may have great instructive significance for clinical medicine. 相似文献
In all-optical gate switches that employ the cascaded second-order nonlinear effect in quasi-phase-matched (QPM) LiNbO/sub 3/ devices, walkoff between the fundamental and second harmonic pulses is very large. The authors experimentally show that crosstalk of the switch induced by such walkoff limits the switching speed, but that the switching speed can significantly be enhanced by walkoff compensation. Using a 20-mm-long QPM LiNbO/sub 3/ waveguide device, the authors switch one of twin pulses separated by 6.25 ps without crosstalk, showing the possibility of switching a 160-Gb/s signal. 相似文献
CdS quantum dot (QD) loaded WO3 films, fabricated by screen printing and short‐time chemical bath deposition (CBD) techniques, have been proven to have an efficient visible‐light‐driven photochromic response. One of the striking features of such a photochromic system is its remote photochromic characteristic. The photogenerated electrons in CdS are injected into WO3 to cause the color change of WO3, while CdS does not show any photochromism. Compared to bare WO3 films, the spectral sensitivity of remote photochromism in the CdS QD loaded WO3 films is red‐shifted. The onset wavelength for remote, the decoloration time for CdS QD loaded WO3 films was found to be significantly shorter than that for bare WO3 films, probably due to their different electron trapping processes. Bandgap excitation in bare WO3 creates deeply trapped electrons in the bulk, whereas the electrons injected from the QDs are trapped at shallow surface states in the remote photochromic system. The successful tailoring of photochromic coloration employing a simple procedure would provide numerous opportunities for designing photo‐ and electrochromic materials with the optimal architecture and tunable properties. 相似文献
This paper presents the design and performance of 60-GHz-band coplanar monolithic microwave integrated circuit (MMIC) active filters. To compensate for the loss of the passive filter, a resonator composed of a quarter-wavelength line is terminated by a circuit with a constant negative resistance over a wide frequency band. Cross-coupling is introduced to make the attenuation poles on both sides of the passband. We develop two types of two-stage filter: one with medium bandwidth and the other with narrow bandwidth. The former shows an insertion loss of 3.0 dB with a 3-dB bandwidth of 2.6 GHz and a rejection of larger than 20 dB at a 3-GHz separation from a center frequency of 65.0 GHz. This filter also shows a noise figure of 10.5 dB. The latter filter shows an insertion loss of 2.8 dB with a 10-dB bandwidth of 2.1 GHz at a center frequency of 65.0 GHz. It also shows an output power of 5.0 dBm at a 1-dB compression point. The loss variation due to temperature variation is successfully compensated using a gate bias control circuit. The size of the MMIC filters is 2.5 mm/spl times/1.1 mm. 相似文献
This paper presents a construction of timing-error-detecting dual-edge-triggered flip-flops (DET-FFs). The proposed FF is based on a conventional DET-FF and a conventional timing error detection method. While the conventional timing error detection uses a transition detector with relatively large area, the proposed FF uses internal signals in a DET-FF as as an alternative to the transition detector. This paper also shows an evaluation result indicating that the proposed FF has smaller area overhead than the simple combination of the conventional DET-FF and timing error detection methods. 相似文献
A new segment quantization method using the Lempel-Ziv algorithm is proposed, and it is applied to quantize line spectral frequency parameters in speech codec. The proposed segment quantizer can save four bits per frame, compared with the ITU-T G.729 speech codec (18 bits/frame), without degradation of subjective or objective speech quality 相似文献
The effect of frozen storage on the biochemical properties of myofibrils, and of their major constituents, actin and myosin, was investigated. Extractability of myofibrillar proteins increased slightly for 3 weeks during frozen storage of muscle, decreasing thereafter. The change in myofibrillar ATPase activity during frozen storage was consistent with that of a reconstituted acto-heavy meromyosin (HMM) complex prepared from frozen stored muscle at the same weight ratio of actin to myosin as in situ. However, myosin ATPase activity showed a different pattern of change when compared with myofibrillar ATPase activity. The maximum velocity of acto-HMM ATPase activity and the apparent dissociation constant of the acto-HMM complex decreased for 1 week during frozen storage, increasing thereafter, indicating that the affinity of actin for myosin was greatest in muscle which had been frozen for 1 week. 相似文献