首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   364篇
  免费   10篇
电工技术   3篇
化学工业   82篇
金属工艺   21篇
机械仪表   11篇
建筑科学   7篇
能源动力   18篇
轻工业   34篇
无线电   68篇
一般工业技术   48篇
冶金工业   58篇
原子能技术   13篇
自动化技术   11篇
  2023年   1篇
  2022年   8篇
  2021年   7篇
  2020年   4篇
  2019年   6篇
  2018年   4篇
  2017年   4篇
  2016年   7篇
  2015年   5篇
  2014年   12篇
  2013年   17篇
  2012年   16篇
  2011年   9篇
  2010年   12篇
  2009年   16篇
  2008年   16篇
  2007年   13篇
  2006年   10篇
  2005年   7篇
  2004年   8篇
  2003年   12篇
  2002年   5篇
  2001年   5篇
  2000年   6篇
  1999年   5篇
  1998年   22篇
  1997年   15篇
  1996年   11篇
  1995年   12篇
  1994年   10篇
  1993年   11篇
  1992年   6篇
  1991年   6篇
  1990年   5篇
  1989年   3篇
  1988年   5篇
  1987年   7篇
  1986年   4篇
  1985年   5篇
  1984年   6篇
  1983年   2篇
  1982年   7篇
  1981年   4篇
  1980年   2篇
  1979年   5篇
  1978年   3篇
  1977年   4篇
  1976年   3篇
  1975年   1篇
排序方式: 共有374条查询结果,搜索用时 15 毫秒
71.
72.
Epoxy/zirconia hybrid materials were synthesized via in situ polymerization of acetic acid-modified zirconium alkoxide. The reactivity of acetic acid-modified zirconium alkoxide changed with the amount of acetic acid added. In the hybrid materials, the phase structure varied between the homogeneous phase and nanophase separation as the reactivity of zirconium alkoxide changed. At the molecular level, the storage modulus in the rubbery region significantly increased and the peak area of tan δ in the glass-transition temperature region decreased with increasing zirconia contents in the hybrid dispersed zirconia. Additionally, the optical properties of the hybrid materials in the homogeneous phase were better than those in the system with nanophase separation.  相似文献   
73.
ITER test blanket modules are the most important components to validate energy production and fuel breeding for future fusion demonstration reactors. Reduced activation ferritic/martensitic steel is recognized as one of the promising structural materials for the breeding blanket systems. Beryllium is a primary candidate plasma facing materials for ITER blanket. In this work, the interfacial properties of Be/reduced activation ferritic/martensitic steel (RAF/Ms) joints were investigated for the first wall of an ITER test blanket module (TBM). The joints were produced by the solid-state hot isostatic pressing (HIP) method. Chromium (Cr) was used as a diffusion barrier with a thickness of 1 μm or 10 μm, formed by plasma vapor deposition on the Be surface. The HIPping was conducted at 1023 K and 1233 K with 160 MPa of static pressure. The temperatures are standard normalizing and tempering temperatures of F82H. EPMA showed the Cr layer effectively worked as a diffusion barrier at 1023 K. However, for the F82H/Be interface which underwent HIP at 1233 K followed by tempering a Be rich layer was formed. Bend tests revealed that a thin Cr layer and low temperature HIP is preferable. The joint with a thick Cr layer suffer from brittleness of Cr itself.  相似文献   
74.
TiFe is a potential candidate for the stationary hydrogen storage systems, but it requires initial activation to absorb hydrogen. This study shows that TiFe processed by high-pressure torsion (HPT) absorbs and desorbs 1.7 wt.% hydrogen at room temperature without activation. The absorption pressure decreases from 2 MPa in the first hydrogenation cycle to 0.7 MPa in the latter cycles. The HPT-processed TiFe exhibits heterogeneous microstructures composed of nanograins, coarse-grains, amorphous-like phases and disordered phases with a high hardness of ∼1050 Hv.  相似文献   
75.
Ball milled Mg–Co alloys with body-centered cubic structure (BCC) may absorb hydrogen at 258 K with a hydrogen capacity around 3 mass%. The phase and morphology evolution process of Mg50Co50 alloys ball milled for 0.5 h–400 h was studied by X-ray diffraction and scanning electron microscope. The formation mechanism of the Mg50Co50 alloys was clarified. Mg50Co50 alloys ball milled for various durations were found to present different hydrogen storage properties which could result from the phase and morphology difference in these samples.  相似文献   
76.
77.
A sphingomyelinase C (SMase) was identified in the culture supernatant of Streptomyces sp. A9107 (S-SMase). Although S-SMase seems to be a typical bacterial SMase, the primary structure of S-SMase was unusual for known bacterial SMase. The gene was functionally overexpressed in the culture medium of recombinant Rhodococcus erythropolis.  相似文献   
78.
It is a significant challenge for a titanium implant, which is a bio-inert material, to recruit osteogenic factors, such as osteoblasts, proteins and blood effectively when these are contained in a biomaterial. The objective of this study was to examine the effect of ultraviolet (UV)-treatment of titanium on surface wettability and the recruitment of osteogenic factors when they are contained in an atelocollagen sponge. UV treatment of a dental implant made of commercially pure titanium was performed with UV-light for 12 min immediately prior to the experiments. Superhydrophilicity on dental implant surfaces was generated with UV-treatment. The collagen sponge containing blood, osteoblasts, or albumin was directly placed on the dental implant. Untreated implants absorbed only a little blood from the collagen sponge, while the UV-treated implants absorbed blood rapidly and allowed it to spread widely, almost over the entire implant surface. Blood coverage was 3.5 times greater for the UV-treated implants (p < 0.001). Only 6% of the osteoblasts transferred from the collagen sponge to the untreated implants, whereas 16% of the osteoblasts transferred to the UV-treated implants (p < 0.001). In addition, a weight ratio between transferred albumin on the implant and measured albumin adsorbed on the implant was 17.3% in untreated implants and 38.5% in UV-treated implants (p < 0.05). These results indicated that UV treatment converts a titanium surface into a superhydrophilic and bio-active material, which could recruite osteogenic factors even when they were contained in a collagen sponge. The transfer and subsequent diffusion and adsorption efficacy of UV-treated titanium surfaces could be useful for bone formation when titanium surfaces and osteogenic factors are intervened with a biomaterial.  相似文献   
79.
80.
Intermetallics of TiFe were processed using three different routes: annealing, plastic deformation using groove rolling and severe plastic deformation using high-pressure torsion (HPT). Hydrogen absorption was less than 0.2 wt.% in the coarse-grained annealed sample because of difficult activation. The groove-rolled sample, with subgrain structure and high density of dislocations and cracks, absorbed 0.3, 1.0, 1.4 and 1.7 wt.% of hydrogen in the first, second, third and fourth hydrogenation cycles, respectively. The HPT-processed sample, containing nanograins, absorbed 1.7–2 wt.% of hydrogen in any hydrogenation cycles. Both samples activated by groove rolling and HPT were not deactivated by long time exposure to the air. No surface segregation was detected after groove rolling, while the HPT-processed sample exhibited surface segregation. The current study confirmed the significance of plastic deformation and formation of grain boundaries and cracks on activation for hydrogen storage.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号