首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3213篇
  免费   196篇
  国内免费   4篇
电工技术   62篇
综合类   1篇
化学工业   860篇
金属工艺   42篇
机械仪表   77篇
建筑科学   152篇
矿业工程   1篇
能源动力   104篇
轻工业   245篇
水利工程   10篇
石油天然气   3篇
武器工业   1篇
无线电   292篇
一般工业技术   576篇
冶金工业   140篇
原子能技术   28篇
自动化技术   819篇
  2024年   5篇
  2023年   41篇
  2022年   134篇
  2021年   149篇
  2020年   77篇
  2019年   90篇
  2018年   98篇
  2017年   92篇
  2016年   145篇
  2015年   114篇
  2014年   146篇
  2013年   219篇
  2012年   207篇
  2011年   231篇
  2010年   197篇
  2009年   192篇
  2008年   177篇
  2007年   166篇
  2006年   117篇
  2005年   94篇
  2004年   119篇
  2003年   97篇
  2002年   63篇
  2001年   50篇
  2000年   42篇
  1999年   36篇
  1998年   29篇
  1997年   22篇
  1996年   37篇
  1995年   30篇
  1994年   26篇
  1993年   19篇
  1992年   19篇
  1991年   10篇
  1990年   6篇
  1989年   11篇
  1988年   2篇
  1987年   12篇
  1986年   6篇
  1985年   15篇
  1984年   17篇
  1983年   9篇
  1982年   7篇
  1981年   7篇
  1980年   3篇
  1979年   6篇
  1978年   4篇
  1977年   6篇
  1975年   3篇
  1973年   3篇
排序方式: 共有3413条查询结果,搜索用时 0 毫秒
71.
Energetic carbon ions are promising projectiles used for cancer radiotherapy. A thorough knowledge of how the energy of these ions is deposited in biological media (mainly composed of liquid water) is required. This can be attained by means of detailed computer simulations, both macroscopically (relevant for appropriately delivering the dose) and at the nanoscale (important for determining the inflicted radiobiological damage). The energy lost per unit path length (i.e., the so-called stopping power) of carbon ions is here theoretically calculated within the dielectric formalism from the excitation spectrum of liquid water obtained from two complementary approaches (one relying on an optical-data model and the other exclusively on ab initio calculations). In addition, the energy carried at the nanometre scale by the generated secondary electrons around the ion’s path is simulated by means of a detailed Monte Carlo code. For this purpose, we use the ion and electron cross sections calculated by means of state-of-the art approaches suited to take into account the condensed-phase nature of the liquid water target. As a result of these simulations, the radial dose around the ion’s path is obtained, as well as the distributions of clustered events in nanometric volumes similar to the dimensions of DNA convolutions, contributing to the biological damage for carbon ions in a wide energy range, covering from the plateau to the maximum of the Bragg peak.  相似文献   
72.
Most in vitro iron mobilization studies from ferritin have been performed in aqueous buffered solutions using a variety of reducing substances. The kinetics of iron mobilization from ferritin in a medium that resembles the complex milieu of cells could dramatically differ from those in aqueous solutions, and to our knowledge, no such studies have been performed. Here, we have studied the kinetics of iron release from ferritin in fresh yeast cell lysates and examined the effect of cellular metabolites on this process. Our results show that iron release from ferritin in buffer is extremely slow compared to cell lysate under identical experimental conditions, suggesting that certain cellular metabolites present in yeast cell lysate facilitate the reductive release of ferric iron from the ferritin core. Using filtration membranes with different molecular weight cut-offs (3, 10, 30, 50, and 100 kDa), we demonstrate that a cellular component >50 kDa is implicated in the reductive release of iron. When the cell lysate was washed three times with buffer, or when NADPH was omitted from the solution, a dramatic decrease in iron mobilization rates was observed. The addition of physiological concentrations of free flavins, such as FMN, FAD, and riboflavin showed about a two-fold increase in the amount of released iron. Notably, all iron release kinetics occurred while the solution oxygen level was still high. Altogether, our results indicate that in addition to ferritin proteolysis, there exists an auxiliary iron reductive mechanism that involves long-range electron transfer reactions facilitated by the ferritin shell. The physiological implications of such iron reductive mechanisms are discussed.  相似文献   
73.
We report the synthesis and characterization of three half-sandwich Ru(II) arene complexes [(η6-arene)Ru(N,N′)L][PF6]2 containing arene = p-cymene, N,N′ = bipyridine, and L = pyridine meta- with methylenenaphthalimide (C1), methylene(nitro)naphthalimide (C2), or methylene(piperidinyl)naphthalimide (C3). The naphthalimide acts as an antenna for photoactivation. After 3 h of irradiation with blue light, the monodentate pyridyl ligand had almost completely dissociated from complex C3, which contains an electron donor on the naphthalimide ring, whereas only 50% dissociation was observed for C1 and C2. This correlates with the lower wavelength and strong absorption of C3 in this region of the spectrum (λmax = 418 nm) compared with C1 and C2 (λmax = 324 and 323 nm, respectively). All the complexes were relatively non-toxic towards A549 human lung cancer cells in the dark, but only complex C3 exhibited good photocytoxicity towards these cancer cells upon irradiation with blue light (IC50 = 10.55 ± 0.30 μM). Complex C3 has the potential for use in photoactivated chemotherapy (PACT).  相似文献   
74.
Prostate cancer (PCa) ranges from indolent to aggressive tumors that may rapidly progress and metastasize. The switch to aggressive PCa is fostered by reactive stroma infiltrating tumor foci. Therefore, reactive stroma-based biomarkers may potentially improve the early detection of aggressive PCa, ameliorating disease classification. Gene expression profiles of PCa reactive fibroblasts highlighted the up-regulation of genes related to stroma deposition, including periostin and sparc. Here, the potential of periostin as a stromal biomarker has been investigated on PCa prostatectomies by immunohistochemistry. Moreover, circulating levels of periostin and sparc have been assessed in a low-risk PCa patient cohort enrolled in active surveillance (AS) by ELISA. We found that periostin is mainly expressed in the peritumoral stroma of prostatectomies, and its stromal expression correlates with PCa grade and aggressive disease features, such as the cribriform growth. Moreover, stromal periostin staining is associated with a shorter biochemical recurrence-free survival of PCa patients. Interestingly, the integration of periostin and sparc circulating levels into a model based on standard clinico-pathological variables improves its performance in predicting disease reclassification of AS patients. In this study, we provide the first evidence that circulating molecular biomarkers of PCa stroma may refine risk assessment and predict the reclassification of AS patients.  相似文献   
75.
Optical losses in a photoelectrochemical (PEC) cell account for a substantial part of solar‐to‐hydrogen conversion losses, but limited attention is paid to the detailed investigation of optical losses in PEC cells. In this work, an optical model of combined coherent and incoherent light propagation in all layers of the PEC cell based on spectroscopic measurements is presented. Specifically, photoelectrodes using transparent conductive substrates such as F:SnO2 coated with thin absorber films are focused. The optical model is verified for hematite photoanodes fabricated by atomic layer deposition and successfully used to determine wavelength‐dependent reflection, transmission, layer absorptances, and charge generation rates. Furthermore, the calculated absorptances enable 20–30% more accurate calculations of the absorbed photon‐to‐current efficiency of PEC cells. Our optical model is a powerful tool for the optimization of the optical performance of PEC cells focusing on single absorber or tandem configurations and represents a cornerstone of a complete (optical and electrical) model for PEC water splitting cells.  相似文献   
76.
The main aim of this study was to identify the most relevant cytokines which, when assessed in the earliest stages from hospital admission, may help to select COVID-19 patients with worse prognosis. A retrospective observational study was conducted in 415 COVID-19 patients (272 males; mean age 68 ± 14 years) hospitalized between May 2020 and March 2021. Within the first 72 h from hospital admission, patients were tested for a large panel of biomarkers, including C-reactive protein (CRP), Mid-regional proadrenomedullin (MR-proADM), Interferon-γ, interleukin 6 (IL-6), IL-1β, IL-8, IL-10, soluble IL2-receptor-α (sIL2Rα), IP10 and TNFα. Extensive statistical analyses were performed (correlations, t-tests, ranking tests and tree modeling). The mortality rate was 65/415 (15.7%) and a negative outcome (death and/or orotracheal intubation) affected 98/415 (23.6%) of cases. Univariate tests showed the majority of biomarkers increased in severe patients, but ranking tests helped to select the best variables to put on decisional tree modeling which identified IL-6 as the first dichotomic marker with a cut-off of 114 pg/mL. Then, a good synergy was found between IL-10, MR-proADM, sIL2Rα, IP10 and CRP in increasing the predictive value in classifying patients at risk or not for a negative outcome. In conclusion, beside IL-6, a panel of other cytokines representing the degree of immunoparalysis and the anti-inflammatory response (IP10, sIL2Rα and IL-10) showed synergic role when combined to biomarkers of systemic inflammation and endothelial dysfunction (CRP, MR-proADM) and may also better explain disease pathogenesis and suggests targeted intervention.  相似文献   
77.
This paper presents a novel system for production of pure oxygen based on the integration of a solid oxide fuel cell (SOFC) and a solid oxide electrolyzer (SOEC). In the proposed arrangement, the SOFC provides electricity, heat and H2O in vapour phase to the SOEC which carries out the inverse reactions of the SOFC, that is the separation of H2O into H2 (used as a fuel for the SOFC) and O2 (representing the yield of the system). Simulations carried out in different operating conditions show that when the integrated SOFC–SOEC device runs at low current densities (less than 1000 A m−2), pure oxygen can be generated with an electric consumption comparable to mid-size cryogenic air separation units, and significantly lower than small scale systems based on the PSA technology.  相似文献   
78.
79.
80.
In this article, we reports the effects of the processing conditions on the morphological and hollow attributes of polystyrene micrometric hollow particles produced by the use of a recently developed technique based on the gas foaming of spherical, dense particles. By modulating the foaming temperature and saturation pressure, we produced hollow particles with different attributes in terms of hollow dimensions, eccentricity, and open–close features. The results from these small systems were compared, and we found agreement with what is typically observed in bulk polymeric foaming, for example, an increase in the foaming efficiency with saturation pressure and the nonmonotonic effect of temperature. Furthermore, we observed an increase in the hollow number when using nucleating agents with respect to the neat polymer and when using nitrogen with respect to carbon dioxide as the blowing agent. The effects of particle manipulation before foaming to achieve hollow elongated or distorted particles are also reported. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 44236.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号