首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   90篇
  免费   3篇
化学工业   39篇
金属工艺   1篇
机械仪表   6篇
建筑科学   1篇
矿业工程   1篇
能源动力   7篇
轻工业   11篇
水利工程   1篇
无线电   6篇
一般工业技术   9篇
冶金工业   1篇
原子能技术   1篇
自动化技术   9篇
  2024年   2篇
  2022年   5篇
  2021年   1篇
  2020年   1篇
  2016年   1篇
  2015年   2篇
  2014年   3篇
  2013年   5篇
  2012年   7篇
  2011年   4篇
  2010年   1篇
  2009年   2篇
  2008年   6篇
  2007年   3篇
  2006年   6篇
  2005年   5篇
  2004年   1篇
  2003年   2篇
  2002年   1篇
  2001年   5篇
  1999年   1篇
  1997年   3篇
  1995年   1篇
  1992年   1篇
  1991年   2篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1986年   3篇
  1985年   2篇
  1984年   1篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
  1979年   2篇
  1977年   3篇
  1976年   1篇
  1974年   1篇
  1972年   1篇
  1959年   1篇
排序方式: 共有93条查询结果,搜索用时 62 毫秒
31.
A model-driven approach for real-time road recognition   总被引:6,自引:0,他引:6  
This article describes a method designed to detect and track road edges starting from images provided by an on-board monocular monochromic camera. Its implementation on specific hardware is also presented in the framework of the VELAC project. The method is based on four modules: (1) detection of the road edges in the image by a model-driven algorithm, which uses a statistical model of the lane sides which manages the occlusions or imperfections of the road marking – this model is initialized by an off-line training step; (2) localization of the vehicle in the lane in which it is travelling; (3) tracking to define a new search space of road edges for the next image; and (4) management of the lane numbers to determine the lane in which the vehicle is travelling. The algorithm is implemented in order to validate the method in a real-time context. Results obtained on marked and unmarked road images show the robustness and precision of the method. Received: 18 November 2000 / Accepted: 7 May 2001  相似文献   
32.
The main aim of this work was to test the developed system of a free hand sonographic probe in the clinical conditions. The measuring system consists of navigation system tracking the position of a linear ultrasound probe and the self-developed software to control the tools and analyse the recorded data. It enables both measurement of geometrical parameters according to the self-designed template and the identification of the three dimensional shape of bone. Moreover the software provides virtual planning of surgery and supports the surgeon to execute the planned scenario in the reality.  相似文献   
33.
Analysis of safety precautions for coal and gas outburst-hazardous strata   总被引:1,自引:0,他引:1  
The author analyses coal and gas outbursts and generalizes the available data on the approaches to solving the problematics of these gas-dynamic events in the framework of Czech Republic Grant “Estimate of the Safety Precautions for Coal and Gas Outburst Hazardous Strata”. __________ Translated from Fiziko-Tekhnicheskie Problemy Razrabotki Poleznykh Iskopaemykh, No. 5, pp. 42–52, September–October, 2008.  相似文献   
34.
This article deals with global constraints for which the set of solutions can be recognized by an extended finite automaton whose size is bounded by a polynomial in n, where n is the number of variables of the corresponding global constraint. By reducing the automaton to a conjunction of signature and transition constraints we show how to systematically obtain an automaton reformulation. Under some restrictions on the signature and transition constraints, this reformulation maintains arc-consistency. An implementation based on some constraints as well as on the metaprogramming facilities of SICStus Prolog is available. For a restricted class of automata we provide an automaton reformulation for the relaxed case, where the violation cost is the minimum number of variables to unassign in order to get back to a solution.  相似文献   
35.
The present state of the analysis of the first spectrum of thorium (Th I) is discussed briefly. Even and odd levels are listed in and2.2. The low even levels form terms arising from the configurations 6d2 7s2 and 6d3 7s. The Th I standard wavelengths that fit into the known level arrays are presented in
Config.DesignJLevelObs. gLS. g






6d27s2a 3F2  0.000.7410.667
3  2869.261.0741.083
4  4961.661.2121.250
a 3P0  2558.060.00   0/0
1  3865.471.4771.500
2  3687.991.2561.500
a 1D2  7280.131.1891.000
a 1G4  8111.001.08  1.000
6d3(4F)7sa5 F1  5563.140.0620.000
2  6362.401.0141.000
3  7502.291.2531.250
6d3(4F)7sa 5F4  8800.251.3101.350
5  9804.811.3661.400
6d3(4P)7sa 5P111601.032.41  2.500
211802.941.7211.833
312847.971.39  1.667
6d3 (2G)7sa 3G313088.571.04  0.750
413297.420.98  1.050
514204.301.13  1.200
6d3 (2D)7sa 3D113962.500.76  0.500
6d3(2H)7sa 3H415493.230.92  0.800
Open in a separate window

Table 2

Odd energy levels of Th I
JLevelObs. g



214032.101.15 
315166.901.06 
216217.481.10 
316671.35(1.18)
217224.301.07 
117354.640.51 
317411.221.12 
217847.101.17 
418053.64…………. 
318069.101.16 
018382.820.00 
118614.331.41 
418809.92…………. 
318930.290.99 
219039.151.11 
319503.151.10 
219516.981.37 
119817.171.57 
419948.43(1.29)
320214.931.17 
120423.501.42 
220522.720.84 
420566.69…………. 
020724.370.00 
120737.281.42 
220922.131.16 
421120.45(1.03)
321165.101.31 
221252.620.67 
421539.591.19 
121668.961.56 
221738.04(0.53)
322141.611.10 
222248.951.13 
322339.001.01 
122396.821.54 
222508.061.38 
322669.901.22 
322855.301.09 
122877.510.64 
123049.461.42 
223093.981.32 
123481.370.85 
323521.061.08 
223603.521.39 
423655.16(1.20)
123741.07(0.71)
223752.671.11 
224182.41(1.27)
424202.571.39 
224307.751.51 
224381.341.25 
324421.08…………. 
324561.651.20 
524701.061.15 
324769.721.15 
124838.920.76 
324981.101.07 
325321.951.35 
425355.600.98 
325442.691.10 
125526.261.08 
225703.401.03 
125809.301.59 
425877.52(1.07)
326036.36(0.96)
426048.541.13 
326096.98…………. 
226113.270.99 
126287.050.72 
226363.111.02 
426384.94(1.07)
326508.031.08 
426790.431.14 
326878.160.88 
326995.781.18 
227061.40(0.94)
127087.99(1.14)
327260.171.12 
427266.031.12 
327317.39(1.07)
327670.951.26 
227674.331.09 
227784.370.85 
527852.751.26 
427948.611.28 
128024.691.03 
228347.55(1.55)
128372.691.79 
228513.32(1.10)
328589.291.17 
128649.151.11 
328676.291.02 
328884.971.17 
228917.960.95 
428932.651.09 
529050.771.14 
129157.100.89 
329157.881.17 
129197.331.16 
229252.821.00 
229419.251.78 
129640.280.98 
329686.371.27 
329744.521.06 
229853.140.92 
330017.101.15 
330255.451.12 
130281.04(1.48)
430517.421.46 
230553.291.05 
130723.821.07 
330761.721.21 
230813.000.93 
130928.730.99 
330990.521.07 
331283.121.13 
331523.961.11 
231599.361.18 
131712.731.16 
331780.871.17 
231870.080.93 
431953.461.06 
132080.390.80 
332197.121.13 
332285.23(1.09)
432439.05(1.20)
232575.410.78 
132665.59(0.83)
432862.51(1.16)
333043.351.15 
133161.80(1.32)
433270.59(1.16)
233297.13(1.23)
333591.201.00 
333800.681.16 
533844.961.10 
433956.93…………. 
434001.331.04 
234371.82(1.32)
134590.97(1.48)
334704.42(1.13)
535081.03(1.08)
435131.221.26 
535273.951.18 
435351.44(1.27)
235533.340.83 
436062.871.11 
236189.01(1.98)
536275.191.00 
136361.491.11 
436382.66(1.07)
536837.961.18 
336871.99…………. 
537008.751.12 
237149.181.05 
437605.801.09 
338216.95…………. 
339611.56(1.25)
Open in a separate window

Table 3

Classified standards of Th I
Wavelength in airRelative intensityClassification



  A
6943.6112600a 5F524204°
6829.0355150a 5F322143°
6756.4528250a 3P017351°
6727.4585200a 5F120421°
6678.707630a 1D222242°
6662.2694250a 5F322502°
6591.4849100a 3F215163°
6588.5398200a 3P119032°
6554.1605100a 3F420214°
6531.3423400a 5F221661°
6490.7378120a 5F424204°
6413.6152200a 3G428883°
6411.8996250a 5F323092°
6342.8600300a 5F424563°
6257.4237100a 5F222333°
6224.5275100a 3F318933°
6207.2205160a 5F121661°
6191.9054100a 5F222502°
6182.6219400a 3F319032°
6151.9932120a 5F323752°
6049.0510100a 3P220213°
6037.6978140a 3P120421°
6007.0725180a 5F425443°
5975.0656250a 5F223092°
5973.6651250a 3P220421°
5938.8255140a 5F122391°
5885.7017120a 5F526794°
5804.1414300a 3F217222°
5789.6439200a 5F324763°
5760.5510600a 3F217351°
5725.3887250a 5F527264°
5615.3202350a 3P121661°
5587.0265500a 3F422853°
5579.3585300a 5F123481°
5573.3538350a 1G426044°
5558.3426400a 1G426093°
5548.1761300a 5F224382°
5539.2615400a 5F527855°
5509.9937300a 5F527944°
5499.2552250a 3P020731°
5431.1116300a 5F224763°
5417.4856200a 3P222143°
5386.6109300a 3F423523°
5343.5813500a 3P222391°
5326.9755400a 1G426873°
5258.3609300a 3P1 22871°
5231.1596900a 3P021661°
5158.6041700a 3F322242°
5002.0968400a 3F322853°
4894.9546350a 3F220421°
4878.733  200a 3P023041°
4865.4769350a 3G433845°
4840.8426400a 3F323523°
4789.3867300a 3P224563°
4766.6001200a 3P124831°
4703.9897500a 3F221252°
4686.19441200a 3F324204°
4668.1720700a 5F328912°
4663.2021200a 3F324302°
4595.4198600a 3P225443°
4555.813  500a 3P125801°
4493.33351200a 3F222242°
4482.1694300a 3F427264°
4458.0018600a 3P226112°
4408.8828600a 3P226362°
4378.1768500a 3F325702°
4374.1244600a 3F222853°
4315.2544400a 3F326033°
4257.4959700a 3F223481°
4235.4635600a 3F223602°
4208.89073000a 3F223752°
4193.0165900a 1G431954°
4158.5351800a 5F533845°
4115.7587800a 5F129852°
4100.34121100a 3F224382°
4067.4507400a 3F327442°
4059.25251000a 5F230993°
4043.3945800a 3F429683°
4036.04751800a 3F224763°
4012.49502000a 3F327782°
3923.7993400a 3F328342°
3869.6635600a 5F232193°
3839.69412500a 3F226033°
3828.38453200a 3F226112°
3803.07504000a 3F226281°
3771.37031500a 3F226503°
3762.93451200a 3P230253°
3727.9022800a 3F329683°
3719.43453000a 3F226873°
3700.9780300a 5F132572°
3692.56611200a 3P230763°
3682.48611000a 3F330013°
3669.9687750a 1G435354°
3656.69361000a 3F330202°
3642.24872200a 3F227442°
3622.7951800a 3P231283°
3612.42711400a 3F227672°
3598.11962000a 3F227782°
3584.1753800a 3F330763°
3576.55731000a 1G436064°
3567.26351200a 3F228021°
3544.01761500a 5F437005°
3518.40331000a 3F331283°
3451.7019900a 3P232651°
3442.5785800a 3F434004°
3405.55751400a 3P233043°
3396.72731400a 3P133292°
3380.8595900a 3F332434°
3330.47651800a 3F230013°
3309.3650800a 3F230202°
3304.23813000a 3F230253°
Open in a separate window  相似文献   
36.
Prediction of geometric errors of robot manipulators with Particle Swarm Optimisation method   总被引:1,自引:0,他引:1  
Gürsel  Romuald  Y.  Bijan 《Robotics and Autonomous Systems》2006,54(12):956-966
This paper reports on the prediction of the expected positioning errors of robot manipulators due to the errors in their geometric parameters. A Swarm Intelligence (SI) based algorithm, which is known as Particle Swarm Optimization (PSO), has been used to generate error estimation functions. The experimental system used is a Motoman SK120 manipulator. The error estimation functions are based on the robot position data provided by a high precision laser measurement system. The functions have been verified for three test trajectories, which contain various configurations of the manipulator. The experimental results demonstrate that the positioning errors of robot manipulators can be effectively predicted using some constant coefficient polynomials whose coefficients are determined by employing the PSO algorithm. It must be emphasized that once the estimation functions are obtained, there may be no need of any further experimental data in order to determine the expected positioning errors for a subsequent use in the error correction process.  相似文献   
37.
Effect of soaking,germination, and roasting on the proximate composition,antinutrient content,and some physicochemical properties of defatted Moringa oleifera seed flour     
Romuald Willy Saa  Edith Fombang Nig  Cherupunpullil Radha  Elie Baudelaire Ndjantou  Nicolas Njintang Yanou 《Journal of Food Processing and Preservation》2022,46(3):e16329
  相似文献   
38.
Size measurement of bubbles in a cavitation tunnel by digital in-line holography     
Lebrun D  Allano D  Méès L  Walle F  Corbin F  Boucheron R  Fréchou D 《Applied optics》2011,50(34):H1-H9
Digital in-line holography (DIH) with a divergent beam is used to measure size and concentration of cavitation bubbles (6-100 μm) in hydrodynamic facilities. A sampling probe is directly inserted in the cavitation tunnel, and the holograms of the bubbles are recorded through a transparent test section specially designed for DIH measurements. The recording beam coming from a fiber-coupled laser diode illuminates the sample volume, and holograms are recorded by a CMOS camera. From each hologram, the sampling volume can be reconstructed slice by slice by applying a wavelet-based reconstruction method. Because of the geometry of the recording beam, a magnification ratio must be introduced for recovering the 3D location and size of each bubble. The method used for processing holograms recorded in such a configuration is presented. Then, statistical results obtained from 5000 holograms recorded under different pressures in the cavitation tunnel are compared and discussed.  相似文献   
39.
Microwave‐assisted synthesis of Ag/ZnO hybrid filler,preparation, and characterization of antibacterial poly(vinyl chloride) composites made from the same     
Pavel Bazant  Ivo Kuritka  Ondrej Hudecek  Michal Machovsky  Miroslav Mrlik  Tomas Sedlacek 《Polymer Composites》2014,35(1):19-26
Hybrid silver/zinc oxide (Ag/ZnO) nanostructured microparticles were obtained via the fast and simple microwave‐assisted synthesis. The phase structure of filler particles was revealed by X‐ray diffraction analysis. Composites with medical‐grade poly(vinyl chloride) were prepared with filler concentration from 1 to 5 wt%. The scanning electron microscopy was used for morphology characterization and elemental analysis of both filler and composites. The mechanical properties of composites and the electrical resistivity were found suitable for medical device application. The excellent surface antibacterial performance of the prepared composite tested according to ISO 22196:2007 against Escherichia coli and Staphylococcus aureus showed the reliability of the material in the medical application field. POLYM. COMPOS., 35:19–26, 2014. © 2013 Society of Plastics Engineers  相似文献   
40.
Flue gas treatment for SO2 removal with air-sparged hydrocyclone technology   总被引:3,自引:0,他引:3  
Bokotko RP  Hupka J  Miller JD 《Environmental science & technology》2005,39(4):1184-1189
Laboratory results from an initial study on the removal of SO2 from gas mixtures are reported using air-sparged hydrocyclone (ASH) technology. Tap water and alkaline solutions were used for absorption, and the influence of gas flow rate, water flow rate, and length of the ASH unit were investigated. The research results indicate thatthe air-sparged hydrocyclone can be used as a highly efficient absorber for SO2 emissions. The ASH allows for 97% SO2 removal using water alone for sulfur dioxide content in the gas phase of 5 g/m3. All SO2 is removed in weakly alkaline solution (0.01 mol NaOH/dm3).  相似文献   
[首页] « 上一页 [1] [2] [3] 4 [5] [6] [7] [8] [9] [10] 下一页 » 末  页»
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号