A moment technique is used to determine the propagation delay in meander (serpentine) delay lines located in printed circuit boards of computer systems. The full three-dimensional effects of the meander structure including signal line thickness, right-angle bends, and skin-effect are included. A set of delay lines having different pitches are considered, and results are calculated and compared to those from two-dimensional simulations, other commercial codes, analytic formulas in the literature, and experimental measurements. Based on the consistency of the results and sensitivity analyses involving numerical gridding and frequency content, the delays calculated for meander lines situated in a homogeneous medium are accurate to better than a few tenths of a percent 相似文献
This paper demonstrates gate-all-around (GAA) n- and p-FETs on a silicon-on-insulator with /spl les/ 5-nm-diameter laterally formed Si nanowire channel. Alternating phase shift mask lithography and self-limiting oxidation techniques were utilized to form 140- to 1000-nm-long nanowires, followed by FET fabrication. The devices exhibit excellent electrostatic control, e.g., near ideal subthreshold slope (/spl sim/ 63 mV/dec), low drain-induced barrier lowering (/spl sim/ 10 mV/V), and with I/sub ON//I/sub OFF/ ratio of /spl sim/10/sup 6/. High drive currents of /spl sim/ 1.5 and /spl sim/1.0 mA//spl mu/m were achieved for 180-nm-long nand p-FETs, respectively. It is verified that the threshold voltage of GAA FETs is independent of substrate bias due to the complete electrostatic shielding of the channel body. 相似文献
A top-down approach of forming SiGe-nanowire (SGNW) MOSFET, with Ge concentration modulated along the source/drain (Si0.7Ge0.3) to channel (Si0.3Ge0.7) regions, is presented. Fabricated by utilizing a pattern-size-dependent Ge-condensation technique, the SGNW heterostructure PMOS device exhibits 4.5times enhancement in the drive current and transconductance (Gm) as compared to the homojunction planar device (Si0.7Ge0.3). This large enhancement can be attributed to several factors including Omega-gated nanowire structure, enhanced hole injection efficiency (due to valence band offset), and improved hole mobility (due to compressive strain and Ge enrichment in the nanowire channel). 相似文献
Variation in the level of the water table is closely linked with recharge. Therefore, any uncertainty associated with the recharge rate is bound to affect the nature of the water-table fluctuation. In this note, a ditch-drainage problem of a sloping aquifer is considered to investigate the effect of uncertainty in the recharge rate on water-table fluctuation. The rate of recharge is taken as an exponentially decaying function with its decay constant as a Gaussian random variable. Expressions for the first two moments of the water-table height, i.e. mean and standard deviation, are presented. By using these expressions, the effect of uncertainty in the recharge rate on the water-table fluctuation has been analyzed with the help of a numerical example. 相似文献
Recharge to the aquifer leads to the growth of a groundwater mound. Therefore, for the proper management of an aquifer system, an accurate prediction of the spatio-temporal variation of the water table is very essential. In this paper, a problem of groundwater mound formation in response to a transient recharge from a rectangular area is investigated. An approximate analytical solution has been developed to predict the transient evolution of the water table. Application of the solution and its sensitivity to the variation of the recharge rate have been illustrated with the help of a numerical example.Notations
a =
Kh/e [L2/T]
-
A =
aquifer's extent in the x-direction [L]
-
B =
aquifer's extent in the y-direction [L]
-
e =
effective porosity
-
h =
variable water table height [L]
-
h0=
initial water table height [L]
-
h =
weighted mean of the depth of saturation [L]
-
K =
hydraulic conductivity [L]
-
m, n =
integers
-
P =
constant rate of recharge [L/T]
-
P1+P0=
initial rate of transient recharge [L/T]
-
P1=
final rate of transient recharge [L/T]
-
s =
h2–h
02
[L2]
-
t =
time of observation [T]
-
x,y =
space coordinates
-
x2–x1=
length of recharge area in x-direction [L]
-
y2–y1=
width of recharge area in y-direction [L]
-
z =
decay constant [T-1] 相似文献
In a wireless sensor network (WSN), the data transmission technique based on the cooperative multiple‐input multiple‐output (CMIMO) scheme reduces the energy consumption of sensor nodes quite effectively by utilizing the space‐time block coding scheme. However, in networks with high node density, the scheme is ineffective due to the high degree of correlated data. Therefore, to enhance the energy efficiency in high node density WSNs, we implemented the distributed source coding (DSC) with the virtual multiple‐input multiple‐output (MIMO) data transmission technique in the WSNs. The DSC‐MIMO first compresses redundant source data using the DSC and then sends it to a virtual MIMO link. The results reveal that, in the DSC‐MIMO scheme, energy consumption is lower than that in the CMIMO technique; it is also lower in the DSC single‐input single‐output (SISO) scheme, compared to that in the SISO technique at various code rates, compression rates, and training overhead factors. The results also indicate that the energy consumption per bit is directly proportional to the velocity and training overhead factor in all the energy saving schemes. 相似文献
In Internet of Things (IoT), the massive connectivity of devices and enormous data on the air have made information susceptible to different type of attacks. Cryptographic algorithms are used to provide confidentiality and maintain the integrity of the information. But small size, limited computational capability, limited memory, and power resources of the devices make it difficult to use the resource intensive traditional cryptographic algorithms for information security. In this scenario it becomes impertinent to develop lightweight security schemes for IoT. A thorough study on the lightweight cryptography as a solution to the security problem of resource-constrained devices in IoT has been presented in this work. This paper is a comprehensive attempt to provide an in-depth and state of the art survey of available lightweight cryptographic primitives till 2019. In this paper 21 lightweight block ciphers, 19 lightweight stream ciphers, 9 lightweight hash functions and 5 variants of elliptic curve cryptography (ECC) has been discussed i.e. in total 54 LWC primitives are compared in their respective classes. The comparison of the ciphers has been carried out in terms of chip area, energy and power, hardware and software efficiency, throughput, latency and figure of merit (FoM). Based on the findings it can be observed that AES and ECC are the most suitable for used lightweight cryptographic primitives. Several open research problems in the field of lightweight cryptography have also been identified.
Multidimensional Systems and Signal Processing - Epileptic seizure detection from the brain EEG signals is an essential step for speeding up the diagnosis that assists researchers and medical... 相似文献
Wireless Personal Communications - Cloud is an environment where the resources are outsourced as service to the cloud consumers based on their demand. The cloud providers follows pay as you go... 相似文献
The effect of hydrogen on p-type Si/Mn and Si/Co Schottky diode has been investigated in present studies. The variations of I–V characteristics suggested that the rectifying act of these diodes change with variation of hydrogen pressure, which is due to the diffusion of hydrogen through the Mn and Co metal films up to Si surface or a creation of surface states at the interface. It is also observed that the effect of hydrogen found to be reverse in order for forward as well as reverse direction of current in Mn and Co deposited films on Si substrate, corresponding to anionic and protonic model of hydrogen interaction with metals. One can say that hydrogen plays an amphoteric role to neutralize either donors or acceptors level in semiconductors and metals. The Raman spectra of Si/Mn and Si/Co are taken and stoke lines link with the presence of hydrogen is observed. In this paper, we are presenting the role of hydrogen pressure on I–V characteristics at the interface of metal–semiconductor structure. 相似文献