This study investigated the effect of ionic crosslinking on the mechanical, barrier, and optical properties of chitosan (CS) and CS/graphene oxide (CSGO) composite films using trisodium citrate (CIT) and sodium tripolyphosphate (TPP) solutions of different concentrations (0.5, 1.0. 2.0, and 3.0% w/v). Successful crosslinking was confirmed by Fourier-transform infrared spectroscopy. The hydrophilicity and light transmittance decreased significantly (p < 0.05) with the increase in concentration of both crosslinking agents. The CS films crosslinked with 3.0% w/v TPP exhibited significant (p < 0.05) improvements in barrier properties, achieving a 51% decrease of water vapor permeability and 59% decrease in oxygen permeability, in comparison to neat CS film. In addition, TPP-crosslinked CSGO films experienced an 82% and 42% improvement in tensile strength and elongation at break, respectively. Overall, crosslinked CS and CSGO films possess significantly improved properties and have great potential to be further studied as food packaging materials. 相似文献
The increasing demand for applying shape memory polymer to tissue culture and biomedical engineering has opened up research opportunities in the field of 4D Printing. The biocompatibility of the scaffolds as a culture medium resulted in the use of plant-based polymers to provide an ambient environment for the growth of cells. This research investigates the 4D printing of acrylated epoxidized soybean oil (AESO), a plant-based shape polymer. The objective of the present work is to establish the relationship between the 4D printing parameters (laser power frequency and print speed) and different properties of the printed material viz. tensile stress, surface roughness, wettability, recovery time, strain fixity and glass transition temperature. The maximum fixity was about 85%, while the recovery time as low as 1.6 s. The print parameters are optimized using regression modeling and multi-objective optimization techniques. The shape memory effect of the polymer is demonstrated by printing samples at the optimized conditions. Dynamic mechanical analysis is performed to evaluate the variation in the glass transition temperature of AESO at specific print parameters. The adoption of an optimal set of laser frequency and print speed is found to improve the properties of AESO, while built by micro stereolithography (micro-SLA). 相似文献
Surface modification of surgical instruments is carried out in order to improve the antibacterial performance against the surgical site infections. Healthcare acquired infections (HAI) and Nosocomial infections are one of the leading causes of complications/deaths after surgery. There is an increasing trend of antibiotic resistance in bacteria such as, vancomycin-resistant Enterococcus (VRE), carbapenem-resistant Enterobacteriaceae (CRE), multi-drug-resistant Mycobacterium tuberculosis (MDR-TB), methicillin-resistant Staphylococcus aureus (MRSA), and Neisseria gonorrhoeae. Thus, surfaces that counteract the adherence and growth of bacteria are employed to avoid the infections. In present study, stainless steel 316 L (SS 316 L) was coated with Silver/Tantalum oxide (Ag/Ta2O5) nanocomposite using reactive magnetron sputtering. The as-sputtered Ag/Ta2O5 nanocomposite (a-Ag/Ta2O5) film was crystallized via thermal treatment at 400 °C. Due to the annealing, the AgNPs migrated to the surface through the columnar paths of the a-Ag/Ta2O5. Thus, the crystallized layer (c-Ag/Ta2O5) exhibited 302% improvement in adhesion strength and enhanced hydrophopibicity. The c-Ag/Ta2O5 also demonstrated excellent antibacterial performance against Staphylococcus aureus (NCTC 6571) (gram-positive bacteria) and Escherichia coli (ATCC 15597) (gram-negative bacteria) according to the inhibition zone measurements. These results suggest that c-Ag/Ta2O5 deposition on SS 316 L substrate has a high potential to serve as an adherent, antibacterial layer on the surgical tools, in order to resist surgical site infections. 相似文献
Photoelectrochemical (PEC) water splitting is a green and sustainable approach capable of driving mass hydrogen production in the future. To realize this vision, development of a well-performing photoelectrode is highly demanded. In this comprehensive study, electrodeposition technique was applied for fabricating BiVO4 films by regulating the deposition time from 1 min until 9 min. Interestingly, the morphology, crystallinity, chemical structure, and optical properties of BiVO4 films depend strongly on the deposition time. It is found that BiVO4 layer deposited for 7 min with a cross-section thickness of around 321.1–326.5 nm showed the optimum performance, whereby the photocurrent reached up to ~0.32 mA/cm?2 at 1.23 V vs. RHE. The deposited BiVO4 represents tiny and long petals, similar to “needle” nanostructures, which is embedded closely into compact agglomerates. Such morphology enables the BiVO4 films to perform efficiently as photoanode in PEC cells. Besides, high crystallinity is detected from the sharp peaks of XRD and Raman analysis, as well as good light absorption capability that are the main contributors to the enhancement of PEC performance. In addition to the facile fabrication offered by electrodeposition method, the non-toxic attributes and the impressive PEC performance of the optimum BiVO4 layer could serve as an interesting option for other applications such as gas sensors, solar cells, degradation of pollutants and photocatalytic water splitting. 相似文献
The present work was aimed to develop pure and varying concentration (1, 2, 3, 5%) of Bi doped ZnO nanomaterials for photocatalytic application through a simple one pot synthesis technique. The structural, morphological, optical and photocatalytic behavior of the prepared samples were characterized using different techniques. The XRD results of the Pristine and Bi doped ZnO nanomaterials confirm that the samples exhibit hexagonal wurtzite structure of the ZnO. The crystallite size of the Bi doped ZnO samples decrease and the 5% Bi-doped ZnO sample exhibits a smaller crystallite size of 12.87 nm. The FT-RAMAN spectra show that the structural organizations of the prepared samples and also the spectra indicate the obtained vibrational modes are due to the motions of Zn2+ ions and O vacancies in the ZnO lattice structure. The FESEM analysis shows the prepared samples exhibits aggregated spherical form for the pristine ZnO and the size of the particles reduced upon increasing Bi concentration. The EDAX analysis confirms the presence of all synthesized compounds without any secondary phase impurities. The optical results suggests higher absorption and lesser bandgap for 5% Bi-doped ZnO sample and the spectrum is red shifted. The photocatalytic performance of the prepared Bi doped ZnO was evaluated in the decolourization reaction of methyl green aqueous solution under black light illumination. Bi doped ZnO samples exhibited high photocatalytic activity than bare ZnO. The loading % was optimized and the best performance was achieved from the sample, which contained 3 wt% of Bi. The rate constants of the decolourization reactions were calculated, and the stability of the best-performed sample was investigated.
Ceramic hollow fiber membranes (CHFMs) are known for their excellent characteristics including high surface area, compact design, and good chemical, thermal, and mechanical stabilities. Despite these interesting attributes, CHFMs are also prone to certain limitations, such as brittleness and high cost that hinder them from being commercialized. To mitigate this drawback, we have developed a high strength, porous ceramic hollow fiber membrane, derived from mullite–kaolinite powder, for efficient oil–wastewater separation. The superhydrophilic, low-cost mullite-based (CHFM) was successfully fabricated through combined phase inversion and sintering techniques. Prior to the fabrication, the as-received mullite–kaolinite was characterized using X-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), and Brunauer–Emmett–Teller (BET) analyses. Subsequently, operational parameters such as the effect of mullite content, sintering temperature, and air gap were optimized during the fabrication of mullite ceramic hollow fiber membrane. The resulting membranes were systematically characterized and evaluated in terms of morphology, porosity, mechanical strength, water flux, and oil–water separation. Increasing the mullite content, air gap, and sintering temperature enhanced the formation of microvoid structure. It is interesting to note that the mechanical strength of 86 MPa was obtained for the membrane containing 60 wt % of mullite sintered at 1450 °C and an air gap of 5 cm. The membrane induced a stable permeate water flux and oil rejection of mullite CHFM of 182 L/m2?h and 97.1%, respectively. As compared to kaolin ceramic counterparts, this porous mullite ceramic hollow fiber membrane can be used in various water treatment applications, including for the separation of oily wastewater due to its mechanical strength and water flux. 相似文献
The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) presents significant social, economic and political challenges worldwide. SARS-CoV-2 has caused over 3.5 million deaths since late 2019. Mutations in the spike (S) glycoprotein are of particular concern because it harbours the domain which recognises the angiotensin-converting enzyme 2 (ACE2) receptor and is the target for neutralising antibodies. Mutations in the S protein may induce alterations in the surface spike structures, changing the conformational B-cell epitopes and leading to a potential reduction in vaccine efficacy. Here, we summarise how the more important variants of SARS-CoV-2, which include cluster 5, lineages B.1.1.7 (Alpha variant), B.1.351 (Beta), P.1 (B.1.1.28/Gamma), B.1.427/B.1.429 (Epsilon), B.1.526 (Iota) and B.1.617.2 (Delta) confer mutations in their respective spike proteins which enhance viral fitness by improving binding affinity to the ACE2 receptor and lead to an increase in infectivity and transmission. We further discuss how these spike protein mutations provide resistance against immune responses, either acquired naturally or induced by vaccination. This information will be valuable in guiding the development of vaccines and other therapeutics for protection against the ongoing coronavirus disease 2019 (COVID-19) pandemic. 相似文献
Diabetes cardiomyopathy is one of the key factors of mortality among diabetic patients around the globe. One of the prior contributors to the progression of diabetic cardiomyopathy is cardiac mitochondrial dysfunction. The cardiac mitochondrial dysfunction can induce oxidative stress in cardiomyocytes and was found to be the cause of majority of the heart morphological and dynamical changes in diabetic cardiomyopathy. To slow down the occurrence of diabetic cardiomyopathy, it is crucial to discover therapeutic agents that target mitochondrial-induced oxidative stress. Flavonoid is a plentiful phytochemical in plants that shows a wide range of biological actions against human diseases. Flavonoids have been extensively documented for their ability to protect the heart from diabetic cardiomyopathy. Flavonoids’ ability to alleviate diabetic cardiomyopathy is primarily attributed to their antioxidant properties. In this review, we present the mechanisms involved in flavonoid therapies in ameliorating mitochondrial-induced oxidative stress in diabetic cardiomyopathy. 相似文献
In this paper, a denoising approach taking into account the statistical properties of the ultrasound image is proposed. In the proposed method, the time correlation between the different frames of a video sequence are taken into consideration to find the maximum a posteriori probability estimate of a noisy pixel. The proposed algorithm is tested on both synthetic and real ultrasound images to verify the effectiveness of the system. The paper provides a model for time correlation of the noise between different frames of the ultrasound video data. To simulate the speckle noise in a natural image, an attempt is made to study the probability density function of speckle noise in an ultrasound video sequence. From our analysis, it is concluded that the speckle noise is multiplicative Gaussian in nature. Certain statistical tests are also conducted to verify the effectiveness of our proposed method. Experimental results show that the proposed despeckling method shows superior performance than its counterparts. 相似文献
This paper presents a study on the effects of milling speed on the properties of in situ copper-based composite produced by mechanical alloying followed by cold pressing and sintering. A powdered mixture of copper, niobium and graphite with the composition of Cu–30%NbC was milled at various speeds (100, 200, 300 and 400 rpm). The NbC phase started to precipitate in the as-milled powder after 30 h milling at 400 rpm and the formation was completed after sintering at 950 °C. Enhancements of NbC phase formation with a reduction in Cu crystallite size were observed with the increase of milling speed. Density, hardness and electrical conductivity of the sintered composite were evaluated. An increase in milling speed resulted in an increase in sintered density and hardness but a reduction of electrical conductivity. The changes in the properties were correlated to the formation of NbC phase and refinement of copper and niobium carbide crystallite size since higher milling speed is associated with higher kinetic energy per hit. 相似文献