The influence of nonlinear thermal radiation on the flow of a viscous fluid between two infinite parallel plates is investigated. The lower plate is solid, fixed and heated, while the upper is porous and capable of moving toward or away from the lower plate. The effects of nonlinear thermal radiation are incorporated in the energy equation by using Rosseland approximation. The similarity transformations have been used to obtain a system of ordinary differential equations. A finite element algorithm, known as Galerkin method, has been employed to obtain the solution of the resulting system of differential equations. It is observed that the radiation parameter Rd increases the temperature of the fluid in all the cases considered. Same is the case with temperature ratio parameter θw. The influence of the concerned parameters on the local rate of heat transfer is also displayed with the help of graphs.
Transition metal oxides/silicon heterocontact solar cells are the subject of intense research efforts owing to their simpler processing steps and reduced parasitic absorption as compared with the traditional silicon heterostructure counterparts. Recently, molybdenum oxide (MoOx, x < 3) has emerged as an integral transition metal oxide for crystalline silicon (cSi)‐based solar cell based on carrier‐selective contacts (CSCs). In this paper, we physically modelled the CSC‐based cSi solar cell featuring MoOx/intrinsic a‐Si:H/n‐type cSi/intrinsic a‐Si:H/n+‐type a‐Si:H for the first time using Silvaco technology computer‐aided design simulator. To analyse the optical and electrical properties of the proposed solar cell, several technological parameters such as work function and thickness of MoOx contact layer, intrinsic a‐Si:H band gap, interface recombination, series resistance, and temperature coefficient have been evaluated. It has been shown that higher work function of MoOx induces the formation of a favourable Schottky barrier height as well as an inversion at the front interface, stimulating least resistive path for holes. Utilising thinner MoOx layer implies reduced tunnelling of minority charge carriers, thus enabling the device to numerically attain 25.33% efficiency. With an optimised interface recombination velocity and reduced parasitic absorption, the proposed device exhibited higher Voc of 752 mV, Jsc of 38.8 mA/cm2, fill‐factor of 79.0%, and an efficiency of 25.6%, which can be termed as the harbinger for industrial production of next‐generation efficient solar cell technology. 相似文献
Metal oxide nanoparticles and their composites with conducting polymers, specifically Polyaniline (PANI) were utilized for fabricating nanoscale supercapacitor (SC) electrode materials. In the present study, we have synthesized pristine Pr2O3, NiO, Co3O4 nanoparticles, binary PANI-Pr2O3, PANI-NiO, PANI-Co3O4, ternary Pr2O3–NiO–Co3O4, and quaternary PANI-Pr2O3–NiO–Co3O4 spherical core-shell nanocomposite using co-precipitation and ultra-sonication methods. The grown samples were characterized with different analytical techniques. The XRD pattern revealed that the as-synthesized products were crystalline with Pr2O3 hexagonal phase, NiO cubic phase, and Co3O4 cubic phase in pure and nanocomposites. The Williamson-Hall, Scherrer, and size-strain plot methods were employed to study the crystalline development and contribution of micro-strain. FTIR pattern exhibited the metal-oxygen and PANI bond vibrations. FE-SEM images shown the spherical core-shell shape morphology of quaternary nanocomposite. EDX evident the presence of praseodymium, cobalt, and nickel in synthesized samples. UV–vis spectroscopy confirmed the absorption in the visible region. The IV graphs showed a higher conductivity of quaternary nanocomposite. The cyclic voltammetry results revealed that the quaternary nanocomposite has a higher specific capacitance 500 Fg-1 as compared to binary nanocomposites 134 F g?1 (PANI-Pr2O3), 143 F g?1 (PANI-Co3O4), 256 F g?1 (PANI-NiO), and PANI (90.8 F g?1) at a scan rate of 5 m Vs?1. The GCD results also showed that the quaternary nanocomposite has a higher specific capacitance of 905 F g?1 at current density 1 A g?1 with maximum energy density and power density of 87.99 kWhkg-1 and 2.6 k W kg?1, respectively. The EIS curve also confirmed that the quaternary nanocomposite has a lower polarization resistance (Rp) and solution resistance (Rs). The higher capacitance of quaternary nanocomposite can facilitate ion transfer, and the formation of its core-shell structure flourish to enhance surface-dependent electrochemical properties. Furthermore, this study gives a novel research idea to manufacture electrode materials for supercapacitors. 相似文献
Green tea (Camellia sinensis) is a prosperous source of polyphenols, especially catechins. In the current research, an effort was made to optimize the extraction conditions for maximum yield of catechins from the local green tea Qi-Men. For the purpose, three different solvents were used, i.e., aqueous ethanol (50%), aqueous methanol (50%), and water at different time intervals (20, 40, and 60 min). Green tea catechins were quantified through HPLC using a C18 column and UV detector. The antioxidant activity of green tea catechins was measured through in vitro tests including DPPH radical scavenging ability and antioxidant activity. Results showed that extraction through aqueous ethanol resulted in maximum yield of green tea catechins (17400 ± 0.19 mg/100 g green tea leaves. Moreover, epigallocatechin, epigallocatechin gallate, epicatechin gallate, and epicatechin ranged from 4.26 ± 0.09 to 6.4 ± 0.2, 12.1 ± 0.123 to 17.7 ± 0.3, 1.32 ± 0.03 to 1.81 ± 0.02, 5.48 ± 0.099 to 8.6 ± 0.2 g/100 g of dry-extract, respectively. Furthermore, highest antiradical (80.65 ± 3.69%) and antioxidant activity (67.12 ± 3.08%) were observed in catechins extracted through aqueous ethanol. 相似文献
Seed micromorphology of 12 species of tribe Vicieae (Papilionoidae) representing five genera were examined using Scanning Electron Microscope (SEM). The different seed types were described, illustrated, compared, and their taxonomic importance is discussed. Seeds exhibit great diversity in ultrastructure and a variety of novel morphological features have been determined among and within genera of the tribe. Seeds were characterized by oval to round shape, ovate to oblong outline and striate to papillate ornamentation. Radiate and wavy cell pattern has been observed as a characteristic exomorphological feature. In Vicia sativa, testa cells superficially seem to form peltate hairs. As a result, seed micromorphology with few exceptions showed variation and its taxonomic value was significant in distinguishing taxa at species level. The disparity in shape and density of papillae or protuberances and alignment of testa cells, may possibly give further insight at intraspecific level within tribe. The findings also illustrated that the use of SEM in seed morphology can reveal hidden morphological affinities among species and showed potential in delimitation of Vicieae members generally at tribe, genus, and particularly at species level. 相似文献
In this paper, we apply the homotopy perturbation method for solving the sixth-order boundary value problems by reformulating them as an equivalent system of integral equations. This equivalent formulation is obtained by using a suitable transformation. The analytical results of the integral equations have been obtained in terms of convergent series with easily computable components. Several examples are given to illustrate the efficiency and implementation of the homotopy perturbation method. Comparisons are made to confirm the reliability of the homotopy perturbation method. We have also considered an example where the homotopy perturbation method is not reliable. 相似文献
Deep-hole drilling is a relatively complex drilling production process due to the high-hole diameter to length ratio which makes the tool shaft prone to vibration and results typically in low-quality holes from geometry and surface finish viewpoints. This study is aimed at investigating deep-hole drilling process for AISI D2 material taking into account different process input parameters. The hole quality is studied and improved using a response surface-based design of an experiment technique which resulted in a better hole quality. 相似文献
Recent research has rejuvenated centuries-old traditional herbs to cure various ailments by using modern tools like diet-based therapy and other regimens. Ginger is one of the classic examples of an herb used for not only culinary preparations but also for unique therapeutic significance owing to its antioxidant, antimicrobial, and anti-inflammatory potential. The pungent fractions of ginger, namely gingerols, shogaols, paradols, and volatile constituents like sesquiterpenes and monoterpenes, are mainly attributed to the health-enhancing perspectives of ginger. This review elucidates the health claims of ginger and the molecular aspects and targets, with special reference to anticancer perspectives, immunonutrition, antioxidant potential, and cardiovascular cure. The molecular targets involved in chemoprevention like the inhibition of NF-κB activation via impairing nuclear translocation, suppresses cIAP1 expression, increases caspase-3/7 activation, arrests cell cycle in G2 + M phases, up-regulates Cytochrome-c, Apaf-1, activates PI3K/Akt/I kappaB kinases IKK, suppresses cell proliferation, and inducts apoptosis and chromatin condensation. Similarly, facts are presented regarding the anti-inflammatory response of ginger components and molecular targets including inhibition of prostaglandin and leukotriene biosynthesis and suppression of 5-lipoxygenase. Furthermore, inhibition of phosphorylation of three mitogen-activated protein kinases (MAPKs), extracellular signal-regulated kinases 1 and 2 (ERK1/2), and c-Jun N-terminal kinase (JNK) are also discussed. The role of ginger in reducing the extent of cardiovascular disorders, diabetes mellitus, and digestive problems has also been described in detail. Although, current review articles summarized the literature pertaining to ginger and its components. However, authors are still of the view that further research should be immediately carried out for meticulousness. 相似文献
Polarization and passivation behavior of three Zr-based BMGs, i.e. Zr58.3Al14.6Ni8.3Cu18.8, Zr58Al16Ni11Cu15 and Zr57.5Al17.5Ni13.8Cu11.3 were investigated in 3% NaCl aqueous solution. Electrochemical investigations were carried out by potentiodynamic polarization method at room temperature. The corroded sample surfaces were examined using scanning electron microscope having energy dispersive spectroscopy (EDS) attachment. The results of the present investigation revealed that Zr58Al16Ni11Cu15 and Zr57.5Al17.5Ni13.8Cu11.3 BMGs having relatively larger supercooled liquid region (ΔTx) and pitting overpotential (ηpit) values exhibit low corrosion current density (icorr) and corrosion penetration rate (CPR) values. 相似文献
Ammonium aluminum carbonate hydroxide (AACH) whiskers prepared by hydrothermal technique were employed as precursor material for development of porous alumina. After compaction of AACH whiskers at 8 bars, calcination was performed at 650?°C followed by sintering at different temperatures. The sintered samples were characterized by XRD, FTIR, SEM and mercury intrusion porosimetry. Mechanical strength was determined by compression testing. At sintering temperatures of 1200?°C to 1400?°C, the % age porosity was around 80%. At 1500?°C, the percentage porosity decreased to 71%. The as-prepared AACH consisted of bundles of whiskers with diameters as thick as 0.7?µm, while an individual whisker had a diameter of about 100?nm with an aspect ratio of about 33. A two-phase mixture consisting of θ- and α-alumina was obtained at 1100?°C, while at 1200?°C and above, single phase α-alumina was formed. θ-alumina retained the bundle-like morphology. However, transformation to α-alumina was accompanied by formation of bead-like morphology. These beads were joined together through necks/stems within the whiskers as well as across the parallel-lying whiskers. These necks grew at 1300?°C to form aggregates with smooth surfaces. At 1400?°C, these aggregates started joining with each other by neck formation and at 1500?°C, a three-dimensional network was formed. For sintering temperatures of up to 1400?°C, pores with sizes around 260?nm were very stable. At 1500?°C, significant pore growth took place along with an overall densification. Therefore, number of pores with sizes of around 260?nm decreased and those with sizes around 10?µm, 1?µm and 5?nm increased. The compression strength of samples sintered at 1100?°C to 1300?°C was in the range of 3.4–4.3?MPa. At 1400?°C, the strength increased to 5.2?MPa, while at 1500?°C, it jumped to 10.8?MPa due to the formation of three-dimensional network. 相似文献