A sample of 42 case notes of alcoholic patients were abstracted for 17 items by three different raters. Interrater agreement was generally rather low. Research based on case-note abstraction which does not report on abstraction reliabilities must therefore be viewed with some suspicion. It would be helpful if clinical material could more often be collected in a standardized manner. 相似文献
The in‐situ study of chemical reactions is an intensively studied research topic. A suitable method for this investigation is the IR micro‐imaging technique, which allows to record space‐ and time‐resolved IR spectra. The preparation of a suitable model system with a 3D pore system for the in‐situ recording of concentration profiles using IR micro‐imaging is described, enabling the space‐ and time‐resolved monitoring of catalytic reactions in nanoporous catalysts for the first time. The model system consists of a nanoporous glass monolith with gas‐tight sealed outer surface, therefore, enabling the recording of concentration profiles of cyclohexane and cyclohexane‐benzene mixtures as a function of time. 相似文献
The branching of arborescent (tree‐like) monocotyledonous plants of the genus Dracaena or of columnar cacti differ considerably from that observed in other dicotyledonous or gymnosperm trees. The investigated ramifications exhibit distinctive morphological and anatomical features. In arborescent monocotyledons the side branches are attached to the main stem by a fiber‐reinforced tissue newly formed during secondary growth, clasping the main stem and finally resulting in a “flange‐mounted” structure. In the case of columnar cacti the most obvious feature is the pronounced constriction at the attachment point of the branches that is also mirrored in the lignified vascular tissue. One might argue that these characteristic morphological and anatomical features in regions exposed to high mechanical stresses represent structural weaknesses. However, the outer shape and the inner structures of the ramifications cause considerable stability and structural integrity of the stem‐branch connection under static and dynamic loading. Our results allow concluding that load‐adaptation in ramified plant structures is a result of a combination of optimization in outer shape and fiber arrangement within the ramifications. Numerical methods simulating the mechanical behavior based on data obtained from the studied plants support this assumption. A deeper understanding of the outer shape of the connection between shoot and branch as well as of the arrangement of the lignified vascular tissues in the branching region, may contribute toward alternative concepts for branched technical light‐weight‐structures. In particular for braided fiber‐reinforced composites this biomimetic approach might help to keep the demand on the available design space as small as possible. 相似文献
In this perfusion magnetic resonance imaging study, the performances of different pseudo-continuous arterial spin labeling (PCASL) sequences were compared: two-dimensional (2D) single-shot readout with simultaneous multislice (SMS), 2D single-shot echo-planar imaging (EPI) and multishot three-dimensional (3D) gradient and spin echo (GRASE) sequences combined with a background-suppression (BS) module.
Materials and methods
Whole-brain PCASL images were acquired from seven healthy volunteers. The performance of each protocol was evaluated by extracting regional cerebral blood flow (rCBF) measures using an inline morphometric segmentation prototype. Image data postprocessing and subsequent statistical analyses enabled comparisons at the regional and sub-regional levels.
Results
The main findings were as follows: (i) Mean global CBF obtained across methods was were highly correlated, and these correlations were significantly higher among the same readout sequences. (ii) Temporal signal-to-noise ratio and gray-matter-to-white-matter CBF ratio were found to be equivalent for all 2D variants but lower than those of 3D-GRASE.
Discussion
Our study demonstrates that the accelerated SMS readout can provide increased acquisition efficiency and/or a higher temporal resolution than conventional 2D and 3D readout sequences. Among all of the methods, 3D-GRASE showed the lowest variability in CBF measurements and thus highest robustness against noise.
Image post-processing corrects for cardiac and respiratory motion (MoCo) during cardiovascular magnetic resonance (CMR) stress perfusion. The study analyzed its influence on visual image evaluation.
Materials and methods
Sixty-two patients with (suspected) coronary artery disease underwent a standard CMR stress perfusion exam during free-breathing. Image post-processing was performed without (non-MoCo) and with MoCo (image intensity normalization; motion extraction with iterative non-rigid registration; motion warping with the combined displacement field). Images were evaluated regarding the perfusion pattern (perfusion deficit, dark rim artifact, uncertain signal loss, and normal perfusion), the general image quality (non-diagnostic, imperfect, good, and excellent), and the reader’s subjective confidence to assess the images (not confident, confident, very confident).
Results
Fifty-three (non-MoCo) and 52 (MoCo) myocardial segments were rated as ‘perfusion deficit’, 113 vs. 109 as ‘dark rim artifacts’, 9 vs. 7 as ‘uncertain signal loss’, and 817 vs. 824 as ‘normal’. Agreement between non-MoCo and MoCo was high with no diagnostic difference per-patient. The image quality of MoCo was rated more often as ‘good’ or ‘excellent’ (92 vs. 63%), and the diagnostic confidence more often as “very confident” (71 vs. 45%) compared to non-MoCo.
Conclusions
The comparison of perfusion images acquired during free-breathing and post-processed with and without motion correction demonstrated that both methods led to a consistent evaluation of the perfusion pattern, while the image quality and the reader’s subjective confidence to assess the images were rated more favorably for MoCo.
Synthetic bone replacement materials are of great interest because they offer certain advantages compared with organic bone grafts. Biodegradability and preoperative manufacturing of patient specific implants are further desirable features in various clinical situations. Both can be realised by 3D powder printing. In this study, we introduce powder-printed magnesium ammonium phosphate (struvite) structures, accompanied by a neutral setting reaction by printing farringtonite (Mg3(PO4)2) powder with ammonium phosphate solution as binder. Suitable powders were obtained after sintering at 1100°C for 5 h following 20–40 min dry grinding in a ball mill. Depending on the post-treatment of the samples, compressive strengths were found to be in the range 2–7 MPa. Cytocompatibility was demonstrated in vitro using the human osteoblastic cell line MG63. 相似文献
This tutorial presents a basic introduction to DNA microarrays as employed for gene expression analysis, approaching the subject from a chemometrics perspective. The emphasis is on describing the nature of the measurement process, from the platforms used to a few of the standard higher-level data analysis tools employed. Topics include experimental design, detection, image processing, measurement errors, ratio calculation, background correction, normalization, and higher-level data processing. The objective is to present the chemometrician with as clear a picture as possible of an evolving technology so that the strengths and limitations of DNA microarrays are appreciated. Although the focus is primarily on spotted, two-color microarrays, a significant discussion of single-channel, lithographic arrays is also included. 相似文献
Journal of Computational Electronics - We discuss the numerical aspects of the Boltzmann transport equation (BE) for electrons in semiconductor devices, which is stabilized by Godunov’s... 相似文献