Objectives: The aim of this in vitro study was to evaluate the effect of different desensitizers’ application on the microleakage of previously restored Class V composite resin restorations.
Materials and methods: Class V cavities were prepared on the buccal surfaces of 40 extracted human third molars. Forty box-shaped cavities were divided into four groups, based on the desensitizers used (n = 10). All teeth were restored with the same bonding agent and composite material. No desensitizer was applied in the control group. In the experimental groups, BisBlock, Gluma and Universal bonding agents were the desensitizers. The desensitizers were applied after completion of composite restorations according to manufacturers’ instructions. All specimens were then thermocycled at 5–55 °C, with a 10-s dwell time for 500 cycles. The samples were then immersed in 0.5% methylene blue dye for 24 h, sectioned into two equal halves, evaluated for microleakage using a stereomicroscope at 30× magnification and scored on a scale of 0–3. The data were analysed using the Kruskal–Wallis test at the significance level p < 0.05.
Results: There were no significant differences in microleakage after desensitizer application (p > 0.05). However, based on the obtained numerical values in our study, while the BisBlock and bonding groups showed lower microleakage at the occlusal margin, BisBlock, Gluma and bonding group showed lower microleakage at the gingival margin compared to the control group.
Conclusions: The application of desensitizers as a post-treatment option could be considered an advisable procedure to minimize microleakage. 相似文献
Attention is presently drawn to the development of a new and green alternative technique for the extraction of essential oil from citrus plant materials. This study was aimed at the extracting essential oil from orange and lemon peels using solvent-free microwave method. This process uses microwave-assisted hydro-diffusion technique to extract essential oil from citrus peels. Response surface methodology was used to investigate the effect of microwave power (200–1,000?W) and extraction time (10–40?min) on the essential oil yield. The oil extracted was characterized using Fourier transform infrared radiation (FTIR) and Gas chromatography–mass spectrometry analysis to determine the functional groups and chemical components present, respectively. The optimum yield of extract from orange and lemon peels were 3.7 and 2.0%, respectively at corresponding power of 1,000?W and time of 10?min. The analysis of variance results showed that the resulting models for both orange and lemon peels were significant and microwave power had greater influence on the extraction processes at both linear and quadratic levels. The FTIR analysis revealed prominent functional groups of alkenes that majorly constitute limonene compound at 1,642 and 1,643?cm?1 for orange and lemon peels, respectively. The present process permits fast and efficient extraction, avoids water and solvent consumption, and allows substantial energy savings. 相似文献
The newly developed Brillouin microscopy is used for the first time to measure in situ the longitudinal elastic stiffness coefficient in the GHz-range inside of glass-epoxy-metal joints as a function of distance from the substrates. Interphases with a local variation of mechanical properties are quantitatively characterized. These interphases possess unexpected widths of tens to hundreds of microns. Inside the interphases, the spatial variation of the longitudinal stiffness coefficient depends on the type of substrate, on the curing conditions for the epoxy and probably on the distribution of internal stresses. The obtained spatial mechanical profiles provide valuable insight into the morphology-driven mechanics of the interphase, but additional information is needed for a full understanding of their physical and chemical origin. The presented results prove the sensitivity of the Brillouin microscopy; the elastic stiffness coefficients are detected with an accuracy in the subpercentage range. The spatial resolution is better than 10 µm. 相似文献
Lead borosilicate glasses, of chemical composition 20SiO2-xPbO-(15 + x)B2O3-5WO2-10ZnO-(50-2x) Na2O (where x = 5, 10, 15, 20, 25) were prepared using the normal melt-quenching technique. The samples were examined using a Philips Analytical X-ray diffraction system in order to check their amorphous nature. The effect of increasing B2O3 and PbO content on glass transition temperature was examined using Differential Thermal Analysis measurements (DTA). The results of DTA showed that both melting and glass transition temperatures decrease with increase of lead and boron oxides. Density and its related parameters have been determined to study the effect of lead-boron content on the structural properties of the prepared samples. Based on the density and DTA results, the network forming role of Pb and B ions was proved. The optical properties of the glass samples have been obtained using UV-VIS measurements. The optical parameters, such as optical band gap, Urbach energy, refractive index, and electronic polarizability were deduced based on the optical data. The observed increase in optical band gap and decrease in Urbach energy as well as the red shift in the absorption spectra arise due to the formation of non-bridging oxygen. 相似文献
The effect of various amounts of copper oxide (CuO) up to 1?wt% on the densification behaviour and mechanical properties of 3?mol% yttria-tetragonal zirconia polycrystal (Y-TZP) were studied by using microwave (MW) sintering method. The MW sintering was performed at temperatures between 1100?°C and 1400?°C, with a heating rate of 30?°C/min. and holding time of 5?min. The beneficial effect of MW in enhancing densification was also compared for the undoped and 0.2?wt% CuO-doped Y-TZP when subjected to conventional sintering (CS) method. The results showed that significant enhancement in the relative density and Vickers hardness were observed for the undoped Y-TZP when MW-sintered between 1100?°C and 1250?°C. It was revealed that the 0.2?wt% CuO-doped Y-TZP and MW sintered at 1250–1300?°C could attain ≥?99.8% of theoretical density, Vickers hardness of about 14.4?GPa, fracture toughness of 7.8 MPam1/2 and exhibited fine equiaxed tetragonal grain size of below 0.25?µm. In contrast, the addition of 1?wt% CuO was detrimental and the samples exhibited about 50% monoclinic phase upon sintering coupled with poor bulk density and mechanical properties. The study also revealed that the addition of 0.2?wt% CuO and subjected to conventional sintering produced similar densification as that obtained for microwave sintering, thus indicating that the dopant played a more significant role than the sintering method. 相似文献
We describe a simple method for decorating graphene (1–5 layers) with Au and Ag nanostructures (nanoparticles, nanorods, and nanoplates). We deposit graphene electrostatically from highly-oriented pyrolytic graphite onto Si/SiO2 surfaces functionalized with (aminopropyl)trimethoxysilane and grow the metal nanostructures by a seed-mediated growth method from hexanethiolate-coated Au monolayer-protected cluster “seeds” that are attached to graphene by hydrophobic interactions. Scanning electron microscopy reveals the selective growth of Au or Ag nanostructures on the graphene surface. In the case of Au, the low pH 2.8 growth solution causes etching of the graphene and formation of scroll-like structures. For Ag, the high pH 9.3 solution does not seem to affect the graphene. Raman spectroscopy is consistent with the graphene morphology and reveals that the presence of Au and Ag nanostructures increases the Raman scattering from the graphene by a factor of about 45 and 150, respectively. This work demonstrates a simple method for decorating graphene with noble metal nanostructures that may have interesting optical, electronic, and chemical properties for applications in nanoelectronics, sensing, and catalysis. 相似文献
An approach for calculating the separation efficiency of uniflow cyclones for the separation of solid particles from gases is proposed. The analytical model is based on an equilibrium orbit concept, similar to that used in the Barth‐Muschelknautz model for conventional reverse‐flow cyclones, which has been proven to be successful for designing and calculating cyclones in a wide range of industrial applications. The proposed model takes into account the special flow pattern of uniflow cyclones, which differs substantially from that in reverse‐flow cyclones. The model provides correct dependencies of the separation efficiency on the main geometry and operation data of low‐loaded uniflow cyclones. Applying the calculation method to uniflow cyclones operated in test facilities indicates good agreement with experimental data. 相似文献
A simple method for the characterisation of fabric softness using a conventional tensile tester and a special measurement device has been developed. The method is demonstrated to be especially useful in detecting changes in softness of a given substrate due to different treatments. The results obtained, particularly hysteresis at 75% of the maximum extension, provide a good correlation with subjective ranking for samples that are subjectively distinguishable; they also differentiate well between samples which seem subjectively indistinguishable. Screening tests were carried out, mainly on wool fabrics, to find the effect of different treatments such as oxidative (alkaline and acidic) and reductive (Blankit IN) bleaching, dyeing with acid and a 1:2 metal complex, chrome and (mono and bi)reactive dyes, the effect of the antisetting agent Basolan AS (BASF) and of crosslinking with Irgasol HTW (CGY) on fabric softness. 相似文献