首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1382篇
  免费   39篇
电工技术   130篇
综合类   2篇
化学工业   394篇
金属工艺   32篇
机械仪表   56篇
建筑科学   25篇
能源动力   87篇
轻工业   93篇
水利工程   2篇
无线电   85篇
一般工业技术   279篇
冶金工业   78篇
原子能技术   45篇
自动化技术   113篇
  2023年   9篇
  2022年   21篇
  2021年   29篇
  2020年   13篇
  2019年   13篇
  2018年   21篇
  2017年   14篇
  2016年   48篇
  2015年   20篇
  2014年   35篇
  2013年   94篇
  2012年   79篇
  2011年   76篇
  2010年   76篇
  2009年   66篇
  2008年   65篇
  2007年   66篇
  2006年   63篇
  2005年   55篇
  2004年   41篇
  2003年   40篇
  2002年   40篇
  2001年   25篇
  2000年   22篇
  1999年   26篇
  1998年   51篇
  1997年   33篇
  1996年   27篇
  1995年   24篇
  1994年   16篇
  1993年   15篇
  1992年   11篇
  1991年   13篇
  1990年   18篇
  1989年   18篇
  1988年   7篇
  1987年   17篇
  1986年   10篇
  1985年   9篇
  1984年   13篇
  1983年   15篇
  1982年   13篇
  1981年   12篇
  1980年   6篇
  1979年   10篇
  1978年   5篇
  1977年   8篇
  1976年   8篇
  1975年   2篇
  1971年   2篇
排序方式: 共有1421条查询结果,搜索用时 15 毫秒
61.
The adsorption of metal ions (Mo6+, Cu2+, Fe2+, and Fe3+) was examined on chemically modified chitosans with a higher fatty acid glycidyl (CGCs), and the adsorption of Cu2+ was examined on ethylenediamine tetraacetic acid dianhydride modified CGCs (EDTA‐CGCs) synthesized by the reaction of the CGCs with ethylenediamine tetraacetic acid dianhydride. The adsorption of phosphate ions onto the resulting substrate/metal‐ion complex was measured. Mo6+ depicted remarkable adsorption toward the CGCs, although all the Mo6+ was desorbed under the adsorption conditions of the phosphate ions. The other metal ions were adsorbed to some extent on CGCs by chelating to the amino group in the substrate, except for CGC‐1, which had the highest degree of substitution (83.9%). Considerable amounts of Fe2+ were adsorbed onto CGCs; however, only a limited number of phosphate ions was adsorbed onto the substrate/metal‐ion complex. As a result, the following adsorbent/metal‐ion complexes gave higher adsorption ability toward phosphate ions: CGC‐4/Cu2+, CGC‐4/Fe3+, and EDTA‐CGC‐3/Fe3+. Where, CGC‐3 is a chemically modified chitosan with the degree of substitution of 26.5 percentage, and CGC‐4 is one with the degree of substitution of 16.0 percentage. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   
62.
In this study, we report the characterization of carbonaceous films deposited on metal substrates by liquid-phase electrodeposition in methanol. The characterization of carbonaceous films by electrodeposition was examined by means of Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), electron energy loss spectroscopy (EELS), secondary ion mass spectrometry (SIMS), atom probe (AP) and high resolution-elastic recoil detection analysis (HR-ERDA). From these results, it was found that the films deposited on the metal substrates were composed of the sp2 and sp3 carbon contents, of which the ratio was about 7:3. Furthermore, the films by electrodeposition contained much hydrogen. The hydrogen contents in the surface were about 60 at.% and those in the subsurface were a few 10 at.%.  相似文献   
63.
Golgi α‐mannosidase II (GMII) is a key enzyme in the N‐glycosylation pathway and is a potential target for cancer chemotherapy. The natural product swainsonine is a potent inhibitor of GMII. In this paper we characterize the binding of 5α‐substituted swainsonine analogues to the soluble catalytic domain of Drosophila GMII by X‐ray crystallography. These inhibitors enjoy an advantage over previously reported GMII inhibitors in that they did not significantly decrease the inhibitory potential of the swainsonine head‐group. The phenyl groups of these analogues occupy a portion of the binding site not previously seen to be populated with either substrate analogues or other inhibitors and they form novel hydrophobic interactions. They displace a well‐organized water cluster, but the presence of a C(10) carbonyl allows the reestablishment of important hydrogen bonds. Already approximately tenfold more active against the Golgi enzyme than the lysosomal enzyme, these inhibitors offer the potential of being extended into the N‐acetylglucosamine binding site of GMII for the creation of even more potent and selective GMII inhibitors.  相似文献   
64.
Dissimilar metal joints of galvannealed steel and commercially available pure aluminium (A1050) sheets were produced by changing the laser power and the roller pressure by the laser pressure welding method. In this method, the YAG laser beam was irradiated into a flare groove made by these dissimilar metal sheets. In addition, the laser beam was scanned at various frequencies and patterns through the lens using two-dimensional scanning mirrors. Then the sheets were pressed by the pressure rolls to be joined. The compound layers in the weld interface were observed by optical microscope, and the layer thicknesses were measured. The thicknesses were in the range of 7–20 μm. The mechanical properties of welded joints were evaluated by the tensile shear test and the peel test. In the tensile shear test, the strengths of the joints produced under the most welding conditions were so high that the fracture occurred through the base aluminium sheet. In the peel test of the specimens subjected to the laser beam of 1200–1400 W power under the roller pressure of 2.94 kN, the specimen fracture took place in the base aluminium sheet. Even if the compound layer was thick, high joint strength was obtained. In order to know the reason for such high strength of joints with thick compound layers and the joining mechanism, the compound layer was observed by the HR-TEM. The TEM observation results revealed that the main phase in the compound layer was the solid solution of Al + Zn. Moreover, the intermetallic compound was identified as FeAl, Fe2Al5, Fe4Al13, and Fe2Al5Zn0.4 phase by electron diffraction. The Fe3Zn10 (Γ phase) of Fe–Zn intermetallic compound was confirmed on a Fe base material. It is assumed that the joining areas were heated in a range of 782°C more than 665°C, a melting point of Al, by laser irradiation because the δlk phase aspect was not confirmed. Because the surfaces of A1050 and Zn plated layer were melted thinly, the layer was over 10 μm thicker. The reason for the production of high strength joints with the relatively thick intermetallic compound layer was attributed to the formation of (Al + Zn) phase with finely dispersed intermetallic compounds.  相似文献   
65.
Laser pressure welding was conducted by changing the laser power and the roller pressure in the previous experiment. It was revealed that dissimilar metal welding of galvannealed steel and pure aluminium was feasible in a wide range of welding conditions. When the roller pressure was more than 1.96 kN at the laser powers equal to or less than 1400 W, the joint strengths were so high that the specimens in the tensile shear and the peel tests fractured in the A1050 parent metal.

In order to know the reason for such high strengths of joints with thick compound layers and the joining mechanism, the compound layer was observed by HR-transmission electron microscopy (TEM). The TEM observation results revealed that the main phase in the compound layer was the solid solution of Al + Zn. Moreover, the intermetallic compound was identified as FeAl, Fe2Al5, Fe4Al13 and Fe2Al5Zn0.4 phase by electron diffraction. The Fe3Zn10 (Γ phase) of Fe–Zn intermetallic compound was confirmed on a Fe base material. It is guessed that the joining areas were heated at a range of 782°C more than 665°C, a melting point of Al, by laser irradiation because the δlk phase aspect was not confirmed. Because the surfaces of A1050 and Zn plated layer were melted thinly, the layer was over 10 μm thicker. The reason for the production of high-strength joints with a relatively thick intermetallic compound layer was attributed to the formation of (Al + Zn) phase with finely dispersed intermetallic compounds.  相似文献   
66.
A thrombus in a coronary artery causes ischemia, which eventually leads to myocardial infarction (MI) if not removed. However, removal generates reactive oxygen species (ROS), which causes ischemia–reperfusion (I/R) injury that damages the tissue and exacerbates the resulting MI. The mechanism of I/R injury is currently extensively understood. However, supplementation of exogenous antioxidants is ineffective against oxidative stress (OS). Enhancing the ability of endogenous antioxidants may be a more effective way to treat OS, and exosomes may play a role as targeted carriers. Exosomes are nanosized vesicles wrapped in biofilms which contain various complex RNAs and proteins. They are important intermediate carriers of intercellular communication and material exchange. In recent years, diagnosis and treatment with exosomes in cardiovascular diseases have gained considerable attention. Herein, we review the new findings of exosomes in the regulation of OS in coronary heart disease, discuss the possibility of exosomes as carriers for the targeted regulation of endogenous ROS generation, and compare the advantages of exosome therapy with those of stem-cell therapy. Finally, we explore several miRNAs found in exosomes against OS.  相似文献   
67.
Schwann cells play an important role in peripheral nerve function, and their dysfunction has been implicated in the pathogenesis of diabetic neuropathy and other demyelinating diseases. The physiological functions of insulin in Schwann cells remain unclear and therefore define the aim of this study. By using immortalized adult Fischer rat Schwann cells (IFRS1), we investigated the mechanism of the stimulating effects of insulin on the cell proliferation and expression of myelin proteins (myelin protein zero (MPZ) and myelin basic protein (MBP). The application of insulin to IFRS1 cells increased the proliferative activity and induced phosphorylation of Akt and ERK, but not P38-MAPK. The proliferative potential of insulin-stimulated IFRS1 was significantly suppressed by the addition of LY294002, a PI3 kinase inhibitor. The insulin-stimulated increase in MPZ expression was significantly suppressed by the addition of PD98059, a MEK inhibitor. Furthermore, insulin-increased MBP expression was significantly suppressed by the addition of LY294002. These findings suggest that both PI3-K/Akt and ERK/MEK pathways are involved in insulin-induced cell growth and upregulation of MPZ and MBP in IFRS1 Schwann cells.  相似文献   
68.
Cold sintering process (CSP) offers a promising strategy for the fabrication of innovative and advanced high permittivity dielectric nanocomposite materials. Here, we introduce Ba(OH)2?8H2O hydrated flux as a new transient chemistry that enables the densification of BaTiO3 in a single step at a temperature as low as 150 °C. This remarkably low temperature is near its Curie transition of 125 °C, associated with a displacive phase transition. The cold sintered BaTiO3 shows a relative density of 95 % and a room temperature relative permittivity over 1000. This new hydrated flux permits the fabrication of a unique dense BaTiO3-polymer nanocomposite with a high volume fraction of ceramics ((1-x) BaTiO3x PTFE, with x = 0.05). The composite exhibits a relative permittivity of approximately 800, at least an order of magnitude higher than previous reports on polymer composites with BaTiO3 nanoparticle fillers that are typically well below 100. Unique high permittivity dielectric nanocomposites with enhanced resistivities can now be designed using polymers to engineer grain boundaries and CSP as a processing method opening up new possibilities in dielectric materials design.  相似文献   
69.
采用分子动力学方法简化的碳纳米管等效纤维模型,利用具有精确周期性边界条件的均质化理论和宏微观均质化法分析正弦波形非连续碳纳米管的有效刚度和局部应力分布规律.结果表明,纳米增强复合材料的有效刚度和局部应力对碳纳米管的波形非常敏感,碳纳米管稍有弯曲就会导致复合材料有效刚度降低和应力传递能力的下降,为揭示复合材料中碳纳米管的增强机制和改善增强效果提供理论依据.  相似文献   
70.
The phase field crystal (PFC) method is anticipated as a new multiscale method, because this method can reproduce physical phenomena depending on atomic structures in metallic materials on the diffusion time scale. Although the PFC method has been applied to some phenomena, there are few studies related to evaluations of mechanical behaviors of materials by appropriate PFC simulation. In a previous work using the PFC method, tensile deformation simulations have been performed under conditions where the volume increases during plastic deformation. In this study, we developed a new numerical technique for PFC deformation simulation that can maintain a constant volume during plastic deformation. To confirm that the PFC model with the proposed technique can reproduce appropriate elastic and plastic deformations, we performed a series of deformation simulations in one and two-dimensions. In one- and two-dimensional single-crystal simulations, linear elastic responses were confirmed in a wide strain rate range. In bicrystal simulations, we could observe typical plastic deformations due to the generation, annihilation and movement of dislocations, and the interaction between the grain boundary and dislocations. Moreover, the deformation behaviors of a nanopolycrystalline structure at high temperature were simulated and the intergranular deformations caused by grain rotation and grain boundary migration were reproduced.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号