排序方式: 共有89条查询结果,搜索用时 15 毫秒
61.
由于在线商品销售的长尾效应,冷门商品的总销量非常巨大,因而对冷门商品的推荐十分重要,然而由于对冷门商品的评价数量少,导致现存的推荐算法对其推荐权重接近平均推荐权重,所以很难使用户关注冷门商品,影响了冷门商品的销售,因此合理地提高冷门商品的推荐权重十分重要.提出一种由长尾分布约束的推荐方法(long tail distribution constrained recommendation method,LTDCR),由用户行为的相似度确定用户间相似关系,并应用不信任关系约束用户相似关系的传播,通过长尾分布约束由用户间相似关系计算的推荐权重,并给出一种精确描述长尾分布的方法.在包含大量冷门商品的数据集的实验结果表明,LTDCR在训练集较小的情况下,有效地提高了对冷门商品的推荐效果. 相似文献
62.
63.
在大数据环境下,对移动众包系统的研究已经成为移动社会网络(MSN)的研究热点。然而由于网络个体的自私性,容易导致移动众包系统的不可信问题,为了激励个体对可信策略的选取,提出一种基于声誉的移动众包系统的激励机制——RMI。首先,结合演化博弈理论和生物学中的Wright-Fisher模型研究移动众包系统的可信演化趋势;在此基础上,分别针对free-riding问题和false-reporting问题建立相应的声誉更新方法,从而形成一套完整的激励机制,激励感知用户和任务请求者对可信策略的选取;最后通过模拟实验对提出的激励机制的有效性和适应性进行了验证。结果显示,与传统的基于社会规范的声誉更新方法相比,RMI有效地提高了移动众包系统的可信性。 相似文献
64.
65.
信息科学中许多组合优化问题可抽象为二分图最大权完美匹配问题.由于数据量的增长,经典算法难以平衡匹配问题求解效率和求解精度的矛盾.基于此,提出一种适用于求解通用最大权完美匹配的智能优化方法.该方法将原始的矩阵形式的匹配候选解转换成可被智能优化算法处理的演化基结构,通过子代选择和量子策略协同过程,自适应地从改进的离散粒子群策略以及模拟退火策略中选择适用于当前演化过程的有效策略,并在保持种群稳定进化的同时促使种群快速收敛.通过不同类型检验函数以及不同维度匹配矩阵的实验,结果表明:与其他方法相比,该方法在有限迭代次数内具有较高的收敛精度以及较快的收敛速度,体现出对经典问题以及高维匹配问题的适应能力. 相似文献
66.
为了抵御无线传感器网络内部节点的拜占庭行为以及自私行为,针对现有恶意节点识别系统检测功能单一、不可抵御高信誉节点的恶意诽谤行为等问题.提出了一种无线传感器网络下的恶意节点识别模型,该模型采用Beta分布描述信誉分布,引入了第三方节点的间接可信度,并将多种攻击类型相对应的节点信任值进行整合.仿真实验表明,该模型能够更快更准确地识别出发起多种攻击的恶意节点,并在一定程度上抵御了高信誉节点的恶意诽谤行为. 相似文献
67.
68.
69.
指出某些应用领域要求对数据库施加专门的数据约束,把判断一个数据库是否满足这种约束的问题归为数据语义判别,提出了用相关语义网络的表示方法来表达数据约束,运用激活传递的推理方法解决这个问题。 相似文献
70.
针对网构软件信任度量模型缺少自适应性和不能很好地刻画信任关系复杂性和不确定性的问题,提出基于Rough-Fuzzy的网构软件信任度量模型.将Rough-Fuzzy思想引入到对网构软件的信任度量上,并将信息熵理论引入到不同信任属性值的权值计算上,以解决信任属性值计算的不确定性问题.实验表明该度量模型对善意节点和恶意节点的信任度有明显的区分效果,能够抑制恶意节点的信任度增长.并且该模型具有良好的适应性,对于一些信任度量参数,系统可以动态地去调整并且增加或减少信任度量属性,能够很好地适应开放网络环境的动态性特点. 相似文献