排序方式: 共有22条查询结果,搜索用时 15 毫秒
11.
生物特征计算旨在实现人体生物特征的自动感知与分析,建立生物特征与人的身份、情感、行为、健康情况和美学评价的对应关系的可计算模型.结合作者近十余年来在生物特征计算方面的研究,从生物特征识别、医学和美学生物特征计算三个方面对生物特征计算的进展和趋势进行了介绍和展望. 相似文献
12.
针对内窥镜手术监控中二维图像三维重建的需求,对结构光三维重建中的标定和匹配中的关键技术进行改进,使用改进后的标定方法和编码策略有效重建了动物内脏目标。为减少错检,在格雷码条纹之间加入一个像素宽的红色,来判断条纹边界像素点的存在与否。使用灰度重心法可精确实现条纹边界定位。针对三步相移法标定投影仪过程中相位去包络的不稳定性问题,使用双频投影栅线法,避免了复杂易产生噪声的去包络过程。实验结果表明,使用文中提出的策略可以有效重建动物内脏目标。 相似文献
13.
基因表达数据的聚类分析研究进展 总被引:3,自引:1,他引:3
基因表达数据的爆炸性增长迫切需求自动、有效的数据分析工具. 目前聚类分析已成为分析基因表达数据获取生物学信息的有力工具. 为了更好地挖掘基因表达数据, 近年来提出了许多改进的传统聚类算法和新聚类算法. 本文首先简单介绍了基因表达数据的获取和表示, 之后系统地介绍了近年来应用在基因表达数据分析中的聚类算法. 根据聚类目标的不同将算法分为基于基因的聚类、基于样本的聚类和两路聚类, 并对每类算法介绍了其生物学的含义及其难点, 详细讨论了各种算法的基本原理及优缺点. 最后总结了当前的基因表达数据的聚类分析方法,并对发展趋势作了进一步的展望. 相似文献
14.
目标跟踪是利用一个视频或图像序列的上下文信息,对目标的外观和运动信息进行建模,从而对目标运动状态进行预测并标定目标位置的一种技术,是计算机视觉的一个重要基础问题,具有重要的理论研究意义和应用价值,在智能视频监控系统、智能人机交互、智能交通和视觉导航系统等方面具有广泛应用。大数据时代的到来及深度学习方法的出现,为目标跟踪的研究提供了新的契机。本文首先阐述了目标跟踪的基本研究框架,从观测模型的角度对现有目标跟踪的历史进行回顾,指出深度学习为获得更为鲁棒的观测模型提供了可能;进而从深度判别模型、深度生成式模型等方面介绍了适用于目标跟踪的深度学习方法;从网络结构、功能划分和网络训练等几个角度对目前的深度目标跟踪方法进行分类并深入地阐述和分析了当前的深度目标跟踪方法;然后,补充介绍了其他一些深度目标跟踪方法,包括基于分类与回归融合的深度目标跟踪方法、基于强化学习的深度目标跟踪方法、基于集成学习的深度目标跟踪方法和基于元学习的深度目标跟踪方法等;之后,介绍了目前主要的适用于深度目标跟踪的数据库及其评测方法;接下来从移动端跟踪系统,基于检测与跟踪的系统等方面深入分析与总结了目标跟踪中的最新具体应用情况,最后对深度学习方法在目标跟踪中存在的训练数据不足、实时跟踪和长程跟踪等问题进行分析,并对未来的发展方向进行了展望。 相似文献
15.
基于支持向量相关滤波器(Support Correlation Filters,SCF)的目标跟踪方法存在严重的样本边界不连续问题,因此模型判别能力受到严重限制。本文将空间正则化项引入到SCF中,提出了基于空间正则化约束的支持向量相关滤波器(Spatially Regularized SCF,SRSCF)模型。相比于SCF,SRSCF不仅可以借助更大的图像区域进行模型学习,同时也能缓解样本的边界不连续问题对模型学习的负面影响,由此得到判别能力更强的模型。此外,本文提出了一种ADMM(Alternating Direction Method of Multiplier)算法求解SRSCF模型,其中每个子问题具有解析解。实验结果表明,相较于SCF,SRSCF能够有效地提升跟踪精度,同时仅增加较少的计算开销。 相似文献
16.
17.
18.
19.
协同过滤是目前推荐系统最常用的技术之一,相比于传统的推荐技术具有一定优势,但其缺点是受用户对商品评价的稀疏性制约,现阶段一般利用矩阵填充技术来解决这一问题。主要研究了基于低秩的矩阵填充模型,针对原有模型解对所有奇异值用同一值收缩的问题,提出了一种加权核范数最小化模型以提高核范数灵活度,给出了该模型用收缩算子可得到全局最优解的相关定理及证明,同时对模型的另一种形式在求解过程中的迭代收敛性进行了证明。用凸优化主流算法在两种真实数据集上进行的实验表明,改进后的模型一定程度上提高了计算速度与准确性。 相似文献
20.