排序方式: 共有27条查询结果,搜索用时 8 毫秒
21.
针对现有隐私保护数据聚集算法依赖某种网络拓扑结构和加解密次数过多的问题,本文提出了一种基于同心圆路线的隐私保护数据聚集算法PCIDA (Privacy-preserving and Concentric-circle Itinerary-based Data Aggregation algorithm).PCIDA沿着设计好的理想路线执行数据聚集,使得算法不依赖网络拓扑结构.PCIDA利用安全通道保证数据的隐私性,避免了数据聚集过程中的加解密运算.PCIDA沿着同心圆并行处理,使得算法数据处理延迟较小.理论分析和实验结果显示,PCIDA在较低通信量和能耗的情况下获得较高的数据隐私性和聚集精确度. 相似文献
22.
随着移动智能设备的普及,群智感知得到广泛应用,也面临严重的隐私泄露问题.现有隐私保护方案一般假设第三方服务平台是可信的,而这种假设对应用场景要求较高.基于此,提出了群智感知中一种新的数据融合隐私保护算法ECPPDA(privacy preservation data aggregation algorithm based on elliptic curve cryptography).服务器将参与者随机划分成g个簇,并形成簇公钥.簇内节点通过簇公钥加密数据并融合得到簇融合结果数据.服务器通过与簇内成员协同合作得到融合结果原文,由于服务器接收到的是融合密文且密文解密需要簇内所有节点共同协作,因此服务器不能得到单个参与者的数据.此外,通过服务器对簇公钥的更新,能够方便参与者动态加入或失效.实验结果显示ECPPDA具有高安全性、低消耗、低通信、高精度的特点. 相似文献
23.
24.
一种异构集群中能量高效的大数据处理算法 总被引:2,自引:0,他引:2
集群的能量消耗已经超过了其本身的硬件购置费用,而大数据处理需要大规模的集群耗费大量时间,因此如何进行能量高效的大数据处理是数据拥有者和使用者亟待解决的问题,也是对能源和环境的一个巨大挑战.现有的研究一般通过关闭部分节点以减少能量消耗,或者设计新的数据存储策略以便实施能量高效的数据处理.通过分析发现即便使用最少的节点也存在很大的能源浪费,而新的数据存储策略对于已经部署好的集群会造成大规模的数据迁移,消耗额外的能量.针对异构集群下I/O密集型的大数据处理任务,提出一种新的能量高效算法MinBalance,将问题分为节点选择和负载均衡两个步骤.在节点选择阶段采用4种不同的贪心策略,充分考虑到节点的异构性,尽量选择最合适的节点进行任务处理;在负载均衡阶段对选择的节点进行负载均衡,以减少各个节点因为等待而造成的能量浪费.该方法具有通用性,不受数据存储策略的影响.实验表明MinBalance方法在数据集较大的情况下相对于传统关闭部分节点的方法可以减少超过60%的能量消耗. 相似文献
25.
26.
27.