排序方式: 共有21条查询结果,搜索用时 15 毫秒
11.
12.
根据先天性心脏病远程辅助诊断中实时分析、心音远程听诊以及便携式需求,设计一种可实时心率检测的远程心音采集系统,实现心音信号的无线实时采集显示、音频回放、云端储存、诊断结果回传以及实时心率检测等功能.在此系统的基础上,提出一种适用于低性能嵌入式设备且不依赖于ECG信号的心率检测算法,通过软件包络检波与峰值定位快速准确地实... 相似文献
13.
自动上色可以将灰度图像转换为色彩合理的自然彩色图像,可以为老旧照片、黑白影视作品等重新恢复颜色,因此在计算机视觉和图形学领域受到广泛关注。然而,为灰度图像分配色彩是一项极具挑战性的任务,存在颜色溢出问题。为解决该问题,提出了一种极化自注意力约束颜色溢出的图像自动上色方法。首先,将前景中的实例和背景分开,降低背景对前景的上色影响,从而减少前景和背景之间的颜色溢出;然后,使用极化自注意力模块把特征分为颜色通道和空间位置两部分,使上色更加准确、具体,从而减少全局图像、实例对象内的颜色溢出;最后,结合融合模块,将全局特征和实例特征通过不同权重融合为一体,完成最终上色。实验结果表明,与ChromaGAN,MemoGAN等算法相比,所提方法在主要指标FID,LPIPS上分别提升了9.7%和10.9%,且SSIM和PSNR指标均达到最优。 相似文献
14.
为了充分挖掘服装图像从全局到局部的多级尺度特征,同时发挥深度学习与传统特征各自在提取服装图像深层语义特征和底层特征上的优势,从而实现聚焦服装本身与服装全面特征的提取,提出基于多特征融合的多尺度服装图像精准化检索算法.首先,为了不同类型特征的有效融合,本文设计了基于特征相似性的融合公式FSF(Feature Similarity Fusion).其次,基于YOLOv3模型同时提取服装全局、主体和款式部件区域构成三级尺度图像,极大减弱背景等干扰因素的影响,聚焦服装本身.之后全局、主体和款式部件三级尺度图像分别送入三路卷积神经网络(Convolutional Neural Network,CNN)进行特征提取,每路CNN均依次进行过服装款式属性分类训练和度量学习训练,分别提高了CNN对服装款式属性特征的提取能力,以及对不同服装图像特征的辨识能力.提取的三路CNN特征使用FSF公式进行特征融合,得到的多尺度CNN融合特征则包含了服装图像从全局到主体,再到款式部件的全面特征.然后,加入款式属性预测优化特征间欧氏距离,同时抑制语义漂移,得到初步检索结果.最后,由于底层特征可以很好的对CNN提取的深层语义特征进行补充,故引入传统特征对初步检索结果的纹理、颜色等特征进行约束,通过FSF公式将多尺度CNN融合特征与传统特征相结合,进一步优化初步检索结果的排序.实验结果表明,该算法可以实现对服装从全局到款式部件区域多尺度CNN特征的充分提取,同时结合传统特征有效优化排序结果,提升检索准确率.在返回Top-20的实验中,相比于FashionNet模型准确率提升了16.4%." 相似文献
15.
16.
利用VMware的Windows和Linux虚拟机组网方法 总被引:1,自引:0,他引:1
本文基于VMware虚拟机软件,在一台物理计算机上分别创建了具有不同操作系统的4台虚拟机,通过实验深入分析了主机与虚拟机之间不同的组网技术。本文介绍的方法对于理解网络概念和进行相关网络实验均具有较好的示范作用,尤其是对于不同操作系统平台下进行的项目开发实践,更是具有一定的参考价值。 相似文献
17.
信息技术具有显著的发展迅速和更新速度快的特征,目前国内的众多大专院校都在对大学计算机基础课程的教学改革进行探索,最近兴起的云技术正对信息技术产业产生前所未有的冲击,并将在近几年内成为信息技术教育中的主流技术,从而引起教学方式及学习方式的重大变革。将云计算技术引入到大学计算机基础课程中是一个非常有价值的研究领域,论文首先对云计算技术进行介绍,然后论述了将云计算技术引入大学计算机基础课程的优势,最后给出了相应的教学案例。 相似文献
18.
为了减小低照度图像在图像预处理过程中所造成的影响,提出一种HSV空间的基于巴特沃斯低通滤波(BLPF)的改进Retinex算法.把低照度图像从RGB各通道转换到HSV各通道,对饱和度分量进行自适应线性拉伸,对亮度分量进行基于BLPF的改进Retinex增强,不仅有效地降低噪声的干扰,在增强图像暗区亮度的同时抑制局部高亮... 相似文献
19.
目前,汉语识别已经取得了一定的研究成果.但由于中国的地域性差异,十里不同音,使得汉语识别系统在进行方言识别时识别率低、性能差.针对语音识别系统在对方言进行识别时的缺陷,构建了基于HTK的衡阳方言孤立词识别系统.该系统使用HTK3.4.1工具箱,以音素为基本识别单元,提取39维梅尔频率倒谱系数(MFCC)语音特征参数,构建隐马尔可夫模型(HMM),采用Viterbi算法进行模型训练和匹配,实现了衡阳方言孤立词语音识别.通过对比实验,比较了在不同因素模型下和不同高斯混合数下系统的性能.实验结果表明,将39维MFCC和5个高斯混合数与HMM模型结合实验时,系统的性能得到很大的改善. 相似文献
20.
现有的图像翻译方法大多依赖数据集域标签来完成翻译任务,这种依赖往往限制了它们的应用范围。针对完全无监督图像翻译任务的方法能够解决域标签的限制问题,但是普遍存在源域信息丢失的现象。为了解决上述2个问题,提出一种基于对比学习语言-图像预训练(CLIP)的无监督图像翻译模型。首先,引入CLIP相似性损失对图像的风格特征施加约束,以在不使用数据集域标签的情况下增强模型传递图像风格信息的能力和准确性;其次,对自适应实例归一化(AdaIN)进行改进,设计一个新的双空间自适应归一化(DSAdaIN)模块,在特征的风格化阶段添加网络的学习和自适应交互过程,以加强对内容源域信息的保留;最后,设计一个鉴别器对比损失来平衡对抗网络损失的训练和优化过程。在多个公开数据集上的实验结果表明,与Star GANv2、Style DIS等模型相比,该模型可在准确传递图像风格信息的同时保留一定的源域信息,且在定量评估指标FID分数和KID分数上分别提升了近3.35和0.57×102,实现了较好的图像翻译性能。 相似文献