排序方式: 共有49条查询结果,搜索用时 15 毫秒
11.
基于支持向量机模糊推理的二级倒立摆控制 总被引:2,自引:0,他引:2
本文提出了一种用于非线性系统控制的支持向量机模糊推理模型.该模型利用支持向量机回归的原理,从训练数据中提取模糊规则并进行简化;采用核函数来描述模糊推理系统,该模糊推理系统具有不必事先确定模糊规则数目、良好的泛化能力等优点.使用该模型对直线二级倒立摆系统构造模糊控制器并进行了实验研究,研究结果表明这种新的模糊规则提取方法对于非线性系统的控制是有效的,由支持向量确定的模糊规则不会出现规则数目"爆炸"的问题,该方法在不便事先确定模糊规则的复杂非线性系统控制中有着重要的应用价值. 相似文献
12.
鉴于数据驱动的寿命预测方法多采用线性退化模型建模,而实际退化数据多呈现为非线性形式,为此,提出一种新型非线性退化模型,利用首达时间原理推导出模型剩余寿命概率密度函数的解析表达式,采用极大似然法估计模型中的未知参数,并用AIC准则检验了模型的准确性。通过仿真数据与激光发生器的性能退化数据对模型进行了验证分析,结果表明了新型非线性退化模型的准确性和实用性。 相似文献
13.
应用速度变异粒子群的系统辨识方法研究 总被引:1,自引:0,他引:1
论文研究了一种利用粒子群优化(PSO)算法对系统模型进行辨识的新方法。该方法的基本思想是将典型的数学模型的相互组合而构成系统模型的新颖辨识方法,即首先将系统结构辨识问题转化为组合优化问题,然后采用粒子群优化算法同时实现了系统的结构辨识与参数辨识。为了进一步增强粒子群优化算法的辨识性能,提出了一种利用速度变异的粒子群优化(VMPSO)算法。最后,给出了仿真示例,其结果表明了所给的系统辨识方法的合理性和求解算法的有效性。 相似文献
14.
卡尔曼滤波在高斯白噪声的假设下是一种最优滤波, 基于区间数学理论的集员滤波 (Set-membership filter, SMF)能够有效处理有界噪声假设下的滤波问题. 然而, 随机噪声和有界噪声在许多情况下会同时干扰控制系统. 由于两种滤波算法都受到各自适用范围的限制, 使用单一滤波算法难以得到理想的估计结果. 本文通过建立具有双重不确定性系统的模型, 提出了一种基于贝叶斯估计联合滤波算法. 该算法用卡尔曼滤波处理系统的随机不确定性, 用集员滤波处理系统的有界不确定性, 得出一个易于实现的滤波器. 最后通过对雷达跟踪系统的仿真, 结果表明, 较单一滤波算法, 联合滤波具有更强的噪声适应性和有效性. 相似文献
15.
16.
讨论了利用小波神经网络对非线性系统辨识的新方法。在辨识过程中,为了提高小波神经网络对非线性系统的辨识性能,使用一种改进粒子群优化算法对BP小波神经网络参数进行训练,求得最优值,达到对非线性系统辨识目的。在数值仿真中,与采用标准粒子群优化算法相比,结果显示了提出的方法在收敛性和稳定性等方面均得到了明显的改善。 相似文献
17.
18.
19.
非线性随机系统完全统计特征控制优于低阶矩控制,但往往因为算法的复杂性难以实际应用.本文针对受高斯白噪声激励的标量非线性随机系统,针对状态响应提出了一种完全统计特征控制方法.首先将刻画完全统计特征的概率密度函数表示成指数函数,利用FPK(Fokker-Planck-Kolmogorov)方程求出概率密度函数的各阶导数,进而建立指数函数Taylor展开的系数与待求反馈控制增益间的关系.然后,依据控制目标给出了求解反馈增益的优化问题.针对目标概率密度函数的不同情况,分别给出了跟踪控制策略:对于指数函数Taylor展开为有限项形式的情况,能够直接得到控制增益并完全跟踪目标概率密度函数;其他情况下,也能够达到较好的控制效果.仿真验证了本文方法的有效性. 相似文献
20.